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INTRODUCTION/MOTIVATION

openMINDS (open Metadata Initiative for Neuroscience Data Structures) is a community-driven, open-source metadata 

framework for graph database systems. It is composed of linked metadata models, libraries of serviceable metadata 

instances, and supportive tooling. Each openMINDS metadata model covers certain aspects of neuroscience data (e.g., 

generic bibliographic records or modality-specific data provenance) with schemas that foster data findability, 

accessibility, interoperability and reusability (FAIR) [1]. For selected schemas, the openMINDS libraries offer 

serviceable metadata instances intended to be commonly used across database systems. Here we will present the 

metadata model and library for SANDS (Spatial Anchoring of Neuroscience Data Structures). SANDS covers ontology-

based in-depth definitions for brain atlases enabling precise references of anatomical annotations, as well as spatial 

integration of atlas and non-atlas data within any graph database system.

METHODS
The SANDS metadata model closely follows the ontological definitions of the Atlas Ontology Model (AtOM) [2]. AtOM 

identifies a (brain) atlas as reference data in a common coordinate system presenting a set of anatomical annotations with a 

given terminology. In fact, any specific combination of these elements constitutes a unique atlas configuration, or version. 

For SANDS we translated these ontological requirements into a modular set of metadata schemas (Fig.1) that integrate with 

the other openMINDS metadata models covering all neuroscience data structures. Within the openMINDS framework, all 

schemas are implemented in a lightweight, JSON-based syntax which is automatically transformed to common schema 

formats, such as JSON-Schema [3]. As an ongoing effort, we identify metadata of community-wide accepted brain atlases, 

including common coordinate spaces, and provide a SANDS library of well-defined atlas descriptions as a collection of linked 

metadata instances (Fig. 2) formatted as JSON-LD files [4]. All openMINDS efforts are open-source, accepting requests and 

contributions from the whole scientific community.

RESULTS AND DISCUSSION
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openMINDS SANDS offers a metadata model to consistently define brain atlases (and their versions) in accordance with 

AtOM (Fig. 1). SANDS also enables to define semantic and coordinate based relations between atlases and non-atlas, 

anatomically anchored data. Moreover, it includes a library of linked metadata instances describing an increasing number of 

community-wide accepted brain atlases (Fig. 2). All integrated openMINDS metadata models and libraries are ready-to-use 

and freely available on GitHub (https://github.com/HumanBrainProject/openMINDS). While the SANDS metadata model 

defines brain atlases and their individual components, the SANDS library offers a collection of serviceable atlas elements 

fostering the FAIRness of brain atlases across database systems and related services (Fig. 1, 2). In 2019, openMINDS (incl. 

SANDS) was adopted by EBRAINS (https://ebrains.eu/), a European neuroscience research infrastructure. It is currently in the 

process of being adopted by Brain/MINDS (https://brainminds.jp/en/), a Japanese national brain research project. Within 

EBRAINS, SANDS facilitates the interoperability between the EBRAINS Knowledge Graph (https://kg.ebrains.eu/) and other 

data services, in particular the EBRAINS Atlases (https://ebrains.eu/services/atlases/).openMINDS is a mature, open-source 

metadata framework for graph database systems. openMINDS SANDS, in particular, offers an ontology-based metadata 

model for defining brain atlases and anatomical locations of non-atlas data. Moreover, the SANDS library offers human and 

machine- readable atlas descriptions that are referenceable, facilitating integrations of brain atlases across scientific studies 

and software services. Through SANDS, brain atlases become more FAIR between different brain initiatives worldwide.

Keywords: atlasing, FAIR, graph database, metadata model, ontology
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INTRODUCTION/MOTIVATION

Biomedical knowledge about the brain is increasing daily, alongside a rapidly growing number of scientific 

publications. While a holistic understanding of this plethora of information by mere reading becomes impossible, recent 

developments in information science and computational linguistics aim to make this knowledge programmatically 

accessible by adding a semantic understanding of publications via literature mining and entity recognition algorithms. 

However, these linguistic methods have not been sufficiently integrated into current brain imaging data standards, 

hindering researchers from harnessing the full potential of computational semantics in neuroscience.

METHODS

Therefore, we developed the text-mining-based semantic meta-analysis platform The Virtual Brain Adapter of Semantics 

(TVBase) that projects biomedical knowledge preserved in over 36 million scientific articles onto a 3D standard brain in MNI 

space. The literature-mining platform SCAIView [1] was used to extract ontologically defined biomedical entities, and 

their associations with brain anatomy, from abstracts and full texts of the PubMed database. By querying each concept, 

its association strength with each anatomical term, defined in the Uberon-ontology [2], was calculated using information 

entropy measures. To project the data onto a standard brain, we created a unique transformation matrix that links 

over 800 unique anatomical terms to the voxel coordinates of a parcellated brain. Our new methodology creates 

semantic brain maps that depict which areas of the brain a particular biomedical concept is associated with in the 

scientific literature and quantifies the relevance of this association by measures of information entropy.
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In this study, a first external validation of semantic TVBase maps show their concordance with empirical brain maps 

derived from the neuromaps database [3]. Maps created from various imaging modalities were investigated, from 

magnetoencephalography (MEG) data to positron emission tomography imaging of tracers for neurotransmitter 

receptors. Statistical robustness was quantified using spatially and functionally constrained permutation testing.

RESULTS AND DISCUSSION

Using the proposed methodology, we mapped over 100,000 biomedical concepts unambiguously defined in state-of-

the-art ontologies and nomenclatures from the Medical Subject Headings (MeSH) [4], Gene Ontology (GO) [5] and the 

Hugo Gene Nomenclature (HGNC) [6]. Validation with conceptually equivalent empirical maps shows substantial overlap 

with semantically extracted brain regions, mainly for MEG power distributions and dopamine, glutamate, and serotonin 

receptor maps, as well as for maps of cerebral blood flow and glucose metabolism. This unlocks the potential for 

using TVBase as proxy for empirical data and further for the integration of biological knowledge into brain network 

models by introducing mechanistically plausible spatial heterogeneity.

In summary, TVBase extracts region-specific information about biomedical concepts from the literature to support 

translational multi-scale approaches to computational neuroscience. It allows for hypothesis-free neuroimaging 

pattern interpretation, hypothesis generation, and applications in personalised medicine. TVBase is available as a python 

package or as an application programming interface (API) connected to a centralized database.

Keywords: Literature research, biomedical knowledge, computational semantics, meta-research, brain mapping, software 

framework, python, The Virtual Brain
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INTRODUCTION / MOTIVATION

The dopaminergic system undergoes major developments during adolescence, a period 
especially vulnerable to mental disorders. Cells expressing dopamine 1 and 2 receptors (D1R 
and D2R, respectively), are particularly sensitive to dopaminergic input. These neurons are 
distributed across the forebrain and contribute to higher cognitive functions such as 
attention, goal-directed behavior, and motivation. The typical development of the 
dopaminergic system is poorly understood, with its information sparse and scattered across 
publications investigating one or at most a few brain regions. This gap in knowledge should 
be filled to understand the ontogeny of brain function and dysfunction. Here, we perform a 
comprehensive analysis of D1R and D2R cell densities, using a collection of high-resolution 
microscopic images available from the EBRAINS Knowledge Graph1. We use these data to ask 
how the density of the dopamine receptor positive cells vary across brain regions, sex, and 
through development.

METHODS

A comprehensive collection of microscopic images of immunohistochemically stained sections 
from 152 male and female mice at five stages of development (P17, P25, P35, P49, and adult) 
was used. These images show D1R and D2R expressing neurons across the forebrain and are 
shared through the DOPAMAP collection available through the EBRAINS Knowledge Graph1. 
We analyzed all images using the semi-automated QUINT workflow2, combining atlas defined 
regions-of-interest and image segmentation to extract and quantify D1R and D2R positive cells 
across sex and age groups. First, all images were registered to the Allen Mouse brain Common 
Coordinate Framework (CCF) tools using linear and non-linear registration with the QuickNII 
(RRID:SCR_016854) and VisuAlign (RRID:SCR_017124) tools3, respectively, resulting in custom 
atlas maps corresponding to each image. To account for differences between young and adult 
brains, images from the P17-P35 age groups were registered to spatially modified atlas 
delineations matching the morphology of young brains4. Secondly, to extract labelled cell 
bodies, images were segmented using ilastik (RRID:SCR_015246)5. Lastly, custom atlas maps 
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and segmented images were combined using Nutil Quantifier (RRID:SCR_017183)6, where all 
extracted cells are quantified per brain region and assigned coordinates in the Allen CCF. Based 
on these comprehensive data, we explored the regional changes of D1R and D2R cell densities 
across development and sex. The derived data set will be shared via EBRAINS.

RESULTS AND DISCUSSION

We observed distinct dominance of D1R densities in rostral regions of the forebrain, which 
switched to D2R dominance in more caudal forebrain regions: D1R cells were most prevalent 
in isocortical and olfactory areas, while D2R cells were more dominant in hypothalamic and 
midbrain regions. This pattern was observed at all ages examined. We further observed that 
D1R cell densities were highest at P17 or P49 in most regions. By contrast, D2R cell densities 
were typically highest at P17, showing a steady decline to adult levels in most regions. 
Interestingly, female mice had higher D1R cell densities than males in most regions at P17, 
while males had higher D2R cell densities than females across development in most regions. 
Surprisingly, D1R and D2R densities became comparable between the sexes with maturation 
towards adulthood, suggesting gene-driven sex differences in the dopaminergic system early 
in life. Our data provide a novel quantitative overview of the regional maturation and spatial 
distributions of dopaminergic neurons in the mouse forebrain. Our findings show profound sex 
and age differences in the dopaminergic system, which challenge previous reports on D1R and 
D2R expression in the forebrain. The high densities of D2R cells at P17 are particularly 
interesting, and future studies might investigate whether the densities peak around this age 
or even earlier.

Keywords: dopamine; dopamine 1 receptor; dopamine 2 receptor; mouse; brain development; 
immunohistochemistry; atlas registration; data sharing; neuroimaging
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Introduction: In mammalian brains, association areas such as the orbitofrontal (OFC), 
posterior parietal (PPC), and insular (IC) cortices are sites of higher-order cognitive 
processing implicated in a wide range of behaviours, including working memory, attention 
guiding, decision making, and spatial navigation. To better understand how these regions 
contribute to these functions, it is of interest to map their structural connectivity 
throughout the brain. Several tract-tracing studies have investigated specific aspects of 
orbitofrontal, posterior parietal and insular connectivity, but a detailed overview of the 
totality of the cortical and subcortical projections from these areas is not available. We 
have therefore accumulated, organised and publicly shared a comprehensive collection of 
experimental rat brain tract tracing data in which the efferent connections the OFC, PPC, 
and IC have been anterogradely labelled.

Methods/results: The data collection comprises a selection of brightfield and fluorescence 
microscopic images of brain sections from 41 adult female Sprague Dawley rats (Charles 
River, Sulzfeld/Kisslegg, Germany, body weight range 180-390g), in which 49 discrete tracer 
injections were placed in the OFC (n = 26; 30 injections), IC (n = 8; 8 injections), and PPC (n
= 7; 11 injections). The tract tracing experiments were performed at the Kavli Institute for 
Systems Neuroscience, Centre for Neural Computation, Trondheim, Norway, and results 
have been partially reported in five previous studies1-5. The images were organised 
(renamed, rotated and flipped to assure correct anteroposterior order and similar 
positioning for all images) using Nutil6 software (RRID: SCR_017183), and thereafter 
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spatially registered to the Waxholm Space Rat brain atlas v4 (RRID: SCR_0171247-9) using 
QuickNII10 (RRID:SCR_016854) and VisuAlign (RRID:SCR_017978). The data collections 
(images and atlas registration files) are shared as three datasets on EBRAINS, grouped by 
the location of the injections in the experiments11-13. The EBRAINS Curation services 
ensures the datasets are discoverable through sufficient and standardised metadata 
according to openMINDS (https://github.com/HumanBrainProject/openMINDS), a 
comprehensive metadata model for neuroscience data structures that is linked to 
taxonomies and ontologies. Figure 1 provides overview of the experimental design, from 
tract tracing experiments to published datasets on EBRAINS. The atlas-registered images 
were used to create a semiquantitative overview of the presence of labelling throughout 
the brain for each experiment. Individual brain regions, defined based on the WHSv4 atlas 
registration, were graded on a scale from 0-4 based on the density of labelling that was 
observed. This table is shared on EBRAINS14, where its relationship to the previously 
mentioned image collection datasets is outlined.

Discussion: Using EBRAINS as a repository for our data ensures the data are shared 
according to the FAIR15 principles and are discoverable in a repository with multi-modal 
research data through standardised metadata descriptions. The data can be found through 
customizable filters via a Search UI (https://search.kg.ebrains.eu) or programmatically via an 
API by searching for their related metadata. The images are easily available for download or 
for immediate view in an online microscopy viewer. The semiquantitative overview table 
provides a useful starting point for exploring the image collection based on a region of 
interest. The image collection, with corresponding reference atlas maps, is suitable as a 
reference framework for investigating the brain-wide efferent connectivity of these cortical 
association areas.

https://search.kg.ebrians.eu/


Figure 1. Workflow for tract-tracing experiments, data processing, and integration with EBRAINS services

Diagram showing the process from data generation to digitisation and sharing; starting with the rats used in 
the tract-tracing experiments to the result consisting of metadata and data shared via the EBRAINS Knowledge 
Graph. The workflow consists of 8 modules, each containing a set of methodological processes with a set input 
and output (white boxes). Module 1-3 (teal boxes) represent the experimental procedures (using n=41 
subjects), module 4-6 (dark green boxes) represent the steps taken to digitise and process the data for 
increased level of FAIR15 (using n=49 series), and module 7-8 represent the sharing and integration of data in 
EBRAINS (resulting in n=3 datasets). Altogether, the processing and sharing of data lead to 1) collections of 
organised and digitised photomicrographs, 2) reference atlas maps for each collection, 3) links for all 
collections pointing to the photomicrographs and atlas maps in the online image viewer, and 4) data and 
metadata available from ebrains.eu. Image credits: colourbox.com (photograph of rat). (Figure 1 in Reiten et 
al. 2023 (in review)).



References

1. Olsen, G. et al. Organization of Posterior Parietal–Frontal Connections in the Rat. Front. Syst. 
Neurosci. 13, (2019).

2. Kondo, H. & Witter, M. Topographic organization of orbitofrontal projections to the 
parahippocampal region in rats. J. Comp. Neurol. 522, 772–793 (2014).

3. Olsen, G., Ohara, S., Iijima, T. & Witter, M. Parahippocampal and retrosplenial connections of 
rat posterior parietal cortex. Hippocampus 27, 335–358 (2017).

4. Olsen, G. & Witter, M. Posterior parietal cortex of the rat: Architectural delineation 
and thalamic differentiation. J. Comp. Neurol. 524, 3774–3809 (2016).

5. Mathiasen, M., Hansen, L., Witter, M. & Leergaard, T. Insular projections to the 
parahippocampal region in the rat. J. Comp. Neurol. 523, 1379–1398 (2015).

6. Groeneboom, N., Yates, S., Puchades, M. & Bjaalie, J. Nutil: A Pre- and Post-processing 
Toolbox for Histological Rodent Brain Section Images. Front. Neuroinform. 14, 1–9 (2020).

7. Papp, E., Leergaard, T., Calabrese, E., Johnson, G. & Bjaalie, J. Waxholm Space atlas of the 
Sprague Dawley rat brain. Neuroimage 97, 374–386 (2014).

8. Osen, K., Imad, J., Wennberg, A., Papp, E. & Leergaard, T. Waxholm Space atlas of the rat 
brain auditory system: Three-dimensional delineations based on structural and diffusion 
tensor magnetic resonance imaging. Neuroimage 199, 38–56 (2019).

9. Kjonigsen, L., Lillehaug, S., Bjaalie, J., Witter, M. & Leergaard, T. Waxholm Space atlas of the rat 
brain hippocampal region: Three-dimensional delineations based on magnetic resonance and 
diffusion tensor imaging. Neuroimage 108, 441–449 (2015).

10. Puchades, M., Csucs, G., Ledergerber, D., Leergaard, T. & Bjaalie, J. Spatial registration of 
serial microscopic brain images to three-dimensional reference atlases with the QuickNII 
tool. PLoS One 14, 1–14 (2019).

11. Kondo, H. et al. Anterogradely labeled axonal projections from the orbitofrontal cortex in 
rat. (2022) doi:10.25493/2MX9-3XF.

12. Mathiasen, M. et al. Anterogradely labeled axonal projections from the insular cortex in 
rat. (2020) doi:10.25493/WK4W-ZCQ.

13. Olsen, G. et al. Anterogradely labeled axonal projections from the posterior parietal cortex 
in rat. (2020) doi:10.25493/FKM4-ZCC.

14. Reiten, I. & Leergaard, T. Semiquantitative overview of efferent projections from the 
orbitofrontal, posterior parietal and insular cortices in rat. EBRAINS (2022) 
doi:https://doi.org/10.25493/Q73Z-83J.

15. Wilkinson, M. et al. The FAIR Guiding Principles for scientific data management and 
stewardship. Sci. Data 3, 1–9 (2016).

Reiten, I., Olsen, G., Bjaalie, J., Witter, M. & Leergaard, T. The efferent connections of the 
orbitofrontal, posterior parietal, and insular cortex of the rat brain. Sci. Data, in review (2023).



5. Changes in synaptic dynamics underlies 
benzodiazepine resistance in paediatric status 
epilepticus

T. Fedele1, R.J. Burman2, A. Steinberg1, G. Selmin1, G. Ramantani1, R. Rosch3

1 - Department of Neuropediatrics, University Children's Hospital Zurich and University of Zurich, Switzerland

2 - Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK

3 - Department of Clinical Neurophysiology, King’s College Hospital NHS Foundation Trust, London, UK

Abstract

Over a third of children in status epilepticus (SE) do not respond to first-line treatment with 
benzodiazepines. Experimental data from animal models has suggested that dynamic changes in fast synaptic 
inhibitory signalling may lead to benzodiazepine resistance. However, it is unknown whether these synaptic 
mechanisms are indeed relevant in paediatric patients. Here we utilise EEG recordings as a clinically accessible 
insight into pathological brain dynamics that occur during SE. Through dynamic causal modelling (DCM) we 
then infer excitatory-inhibitory coupling parameters of cortical microcircuits in different brain states.

We use DCM to test key hypotheses regarding benzodiazepine effects directly on EEG data recorded in patients 
during SE: (1) that benzodiazepines modulate inhibitory coupling in SE, (2) that there are differences in the 
balance of excitatory-inhibitory coupling in benzodiazepine responders vs non- responders. We 
investigated a cohort of 26 paediatric patients (8 benzodiazepine responders) who were managed at the 
University Children’s Hospital Zürich for SE. Using the DCM framework, we fitted hierarchical neural mass models 
to (1) identify which synaptic parameters best explain the observed EEG changes, and (2) infer group differences 
in synaptic parameters between responders and non- responders.

The fitted DCMs captured the following changes in EEG broadband spectra associated with 
benzodiazepine treatment: (1) the observed changes across conditions were best explained through alterations 
in inhibitory coupling; (2) responders and non-responders differed in the modulation of inhibitory synaptic 
connections in the neural mass model.

Overall, this study demonstrates that the effect of benzodiazepines on macroscopic brain dynamics in 
paediatric patients with SE is best explained by dynamic shifts in inhibitory cortical synaptic signalling. 
The described group differences suggest that there may be baseline differences in cortical synaptic coupling 
which may be captured by DCM and used to help predict and optimise treatment responses in patients with 
paediatric SE.
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Introduction

The causes of epilepsy and its defining symptom – seizures – lie in cellular and architectural features of brain 

tissue. Though, for clinical diagnoses, electrophysiological measurements, e.g., intracranial electroencephalography (iEEG), 

are used to infer causes of seizures. Therefore, understanding how brain tissue generates (pathological) 

electrophysiological signals is essential. We aim to bridge this explanatory gap using biophysically informed meso-scale 

neural mass models (NMM) and dynamic causal modelling (DCM).

We developed an approach to integrate electrophysiological data as iEEG recordings, and microscale synaptic data 

such as neuroreceptor density (RD) maps, to derive a normative map of effective synaptic parameters across the cortical 

surface.

Methods

We asked how RD from autoradiography studies are related to ‘healthy’ cortex iEEG activity recorded in 

individuals with epilepsy remote from the putative epileptogenic zone. We first tested if a canonical microcircuit 

NMM replicates electrophysiological (iEEG) data using DCM. We then asked if receptor densities can be predicted by 

iEEG signals, and if regional receptor compositions (‘fingerprints’) can explain regional variation in iEEG spectra. In 

addition, to illustrate the wider applicability of our findings, we used mismatch negativity (MMN) as a case study to 

show improved predictions with our informed connectivity parameter priors.

Results

First, our DCM replicated ongoing awake cross spectral densities of iEEG signals (1770 data series) highly 

accurately; with 40 exceptions (≅ 2.3% of the total number) DCM was able to explain key components of regional 

cortical signal variability.

Second, we tested the hypothesis that RD variance across the cortical surface explains regional differences in 

DCM parameters through a parametric empirical Bayesian hierarchical model. We compared Bayesian model fits of these 

hierarchical models using different combinations of RD priors – including those driven only be the main excitatory (AMPA, 

NMDA) and inhibitory (GABA) subclasses. However, the winning model contained the full set of RD values across 15 

receptor types.

Third, using principal component analysis (PCA) we captured regional receptor composition variability with a 

reduced dimensionality, and showed that the principal components of receptor density fingerprints can explain regional 

variation in the generation of SEEG spectra, i.e., including receptor density fingerprints improves model evidence (free 

energy ≈ accuracy – complexity).
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Fourth, we showed that NMM parameter priors, which include NR information, are informative for modelling the 

MMN and lead to higher model evidence and fit, and significantly improved parameter posteriors.

Discussion

In summary, we show how tissue characteristics (i.e., receptor density) can be incorporated to improve 

biophysically grounded models and explain regional variations in electrophysiology. The results will be part of a toolbox 

(published on GitHub and EBRAINS) that enables integration of normative datasets as prior information to generate patient 

specific models of (pathophysiological) cortical dynamics, for example in epilepsy.

Subsequent parts for this project will focus on clinical case studies, primarily on iEEG of children with refractory epilepsy, 

especially focal cortical dysplasia, who undergo pre-surgical evaluation.
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Epilepsy, FCD, iEEG/SEEG, Neuroreceptors, Biomarkers, Modelling, Translational, Personal Medicine

Figure 1: Illustration: Methodology and Results



Figure 2: Illustration: Methodology and Results

Description: A) DCM CMC showed excellent fit for about 97% of channels; B) Comparison of model evidence (Free 

Energy) of neuroreceptor density (RD) informed models: log Bayes factor >5 indicates very strong evidence in favour of 

model with four PCs; C) Mismatch negativity case study: model which used RD

priors outperforms baseline models (standard ERP and CMC) as well as CMC with Hanning filter
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INTRODUCTION

The challenges facing modern neuroscientists that wish to model the brain1 are precluded by a long list of 

requirements that to a researcher may seem more akin to housekeeping chores than science: writing code to create 

abstractions for cells, morphologies, biophysical properties, and their connections, validating, organizing, and maintaining 

code to keep up with modern demands of software quality. Here we present the latest major version of The Brain Scaffold 

Builder (BSB), starting its public beta release of version 4, with new features that let scientists dive straight into writing the 

scientific parts of the model, while promoting best software development practices. The BSB is an EBRAINS component2 and 

can be conveniently installed on any machine or platform where Python is available.

METHODS

The framework uses a black box component approach, where the invariant part of the modelling task is provided by the 

framework to the user as a class. The class can be inherited from and the variant model-specific part can be defined in the 

child class. The framework revolves around the configuration and strategy design patterns: A configuration file in which 

declarations of components and their respective parameters are explicitly stated, is parsed, and so too are any file, 

morphology, dataset, code dependencies, or online data sources (e.g., atlas-based volumes and cell densities) of the model. 

This makes the configuration file a total and sufficient description of the model, to be reified from its portable abstract 

configuration description to a concrete, possibly very large, simulatable model – anywhere – without additional, 

unknown, or missing dependencies. Using the strategy pattern, each component declaration can bootstrap itself and is 

given the already parsed and validated parameters by the framework. When the command is received to reconstruct the 

model, each component fulfills its interface
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with the framework which manages a job pool to run parallel tasks until the reconstruction is complete. The job pool can 

run in series on a single process or be scaled up to distributed HPC clusters, without any changes to the model description 

code: write once, run anywhere. User code is by design parallel: placement strategy components are given a 

placement context, consisting of a description of the cell types to be placed, and the volume in which to place them. The 

placement strategy is then asked to fill a subset of the volume within certain boundaries. These tasks can be parallelized by 

tiling a rectangular grid over the total volume and asking each parallel process to fill a tile. Similarly, each connection strategy 

component is asked to determine the postsynaptic region of interest for each presynaptic tile, and are parallelized as 

such. The reconstructed cell types and connections can then be simulated on any of the supported simulation backends 

(NEST, Arbor, and NEURON), by defining a simulator specific representation for each of the following: cell models to represent 

cell types, synaptic models to represent connection types, and input/output devices to set up experimental protocols such as 

voltage probes, poisson spike generators, etc (Fig. 1).

RESULTS AND DISCUSSION

As a usecase, the BSB was applied to the mouse cerebellar cortical network3, which has a geometrically organized architecture 

that has been suggested to imply its computational properties. Morphology-based reconstruction and simulations as 

multicompartmental (NEURON) and point-neuron (NEST) networks were carried out. Both cerebellar general-purpose 

microcircuit and atlas-based specific region models using orientation field were developed. The BSB has been applied 

also for the reconstruction of thalamic nuclei and hippocampal regions.

Given the “scaffold” design, new neurons and mechanisms can be plugged-in to address ontogenesis, species differences (for 

example in humans) and pathology.

Figures

Figure 1. Core BSB operations. In the reconstruction phase, the BSB proceeds by sequentially defining the network volume, 

cell types, cell placement, cell connectivity. Once neurons and fibers are positioned, their 

geometries/morphologies are imported, and connection rules allow to wire them up and to build the network 

connectome. In the simulation phase, neuron and synapse models are linked to simulators by a specific adapter and 

interfaced to a set of devices for stimulation and recording. This workflow is applicable to any kind of brain neuronal 

network
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INTRODUCTION/MOTIVATION

The thalamus is considered the gate for most sensory information on its way to the cortex. In the case 
of the somatosensory system, that role is played specifically by the ventral posterior complex (VP) [1]. 
The axonal projections from the neurons of these nuclei are extremely precise, and they manifest as 
column- and layer-specific. While tract-tracing experiments are the gold standard for revealing 
thalamocortical connectivity, only a few such experiments can be performed in the same brain without 
invalidating their interpretation. Therefore, thalamocortical network analysis would benefit from 
accurately registering many individual experiments to a common reference space serving as an 
anatomical template.

The Human Brain Project has developed robust software tools for the registration of mouse brain 
sections to the Allen Common Coordinate Framework (CCF) [2]. Integrated as the QUINT workflow [3], 
they allow the registration of brain regions from the CCF to experimental sections to subsequently 
count labeled somas and neurites in each of these regions. Here we develop an alternative pipeline that 
inverts the first step of QUINT: it registers connectivity data to the CCF, and then counts labeled 
neurites. The advantage is that the registered data can now be integrated with other data or used with 
updated brain parcellations. The pipeline is built as a Jupyter notebook and relies on the same tools 
as the QUINT workflow.

METHODS

Our use case consists of a series of evenly-spaced histological sections from the mouse brain, in which 
an anterograde tracer was injected in the somatosensory thalamus. This resulted in the labeling of 10-
100 closely located cell bodies and their complete axonal arborizations. For each experiment, we 
acquired stacks of images covering whole sections at 10x magnification on a brightfield microscope 
(Neurolucida, MBF Bioscience). Minimum-intensity projection
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(MIP) images were produced from the stacks (Fig. 1A). For each MIP image, we used Ilastik’s Pixel 
Classification workflow (Fig. 1E-F)[4] to segment the labeled neurites from the background. In parallel, 
we performed linear registration of the images to CCF using the DeepSlice deep learning algorithm, 
which we manually curated via the QuickNii tool [5,6]. We then applied the VisuAlign tool for refined 
non-linear registration by manually placing histological landmarks over the atlas delineation (Fig. 1B-
D). Subsequently, we computed the inverse registration of the segmented images to CCF in order to 
map the labelled pixels to the 3D brain template. Lastly, we produced 2D cortical and thalamic flatmaps 
[7] overlaid with anatomical boundaries to visually inspect the topographical organization of the 
registered populations (Fig. 2).

RESULTS AND DISCUSSION

After the registration, we identified an organization of VPM that mirrors that of the cortex: populations 
specifically targeting SSp were located rostrally in the nucleus, whereas those targeting SSs were more 
caudal. Each of these sectors can be further subdivided based on the precise somatotopic organization 
of its cortical target: from dorsal to ventral, sectors are related to whiskers, nose and mouth, 
respectively. A third population in ventrolateral VPM projects to both SSp and SSs. In SSp, the axonal 
layer distribution is markedly different.

Furthermore, registering the dataset allowed us to incorporate it into a virtual atlas that is to be 
shared, expanded and improved by the neuroscientific community. This can set the basis for 
multimodal data integration to a whole-brain connectivity matrix that can potentially correlate 
anatomical and physiological data.

Despite requiring some coding knowledge by the user, our pipeline offers extensive visualization 
options such as cortical flatmaps, 2D representations of subcortical nuclei and interactions with the 
Scalable Brain Atlas Composer 3D visualization tool [8]. Lastly, it is fully compatible with the QUINT 
workflow, allowing further analyses of previously registered datasets.

Keywords: QUINT workflow, Common Coordinate Framework, registration, somatosensory system, 
thalamus, cortex
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Figure 1: Illustration of the 3D registration pipeline presented in this work. (A-A’’) Conceptual illustration of 
the registration process. (B) Linear registration of a coronal slice to the Allen CCF with DeepSlice and QuickNii. 
(C, D): Non-linear registration with VisuAlign. (E-E’) Segmentation of the axons using the ilastik toolbox. (F-F’) 
Segmentation of the injection volume.

Figure 2. Custom plots for data visualization. (A) Top view of the isocortex showing the distribution of thalamic 
axons coming from VPM. (B) A dorsal flatmap of one hemisphere of the cortex, illustrating the same projection 
as in A.(C) Integration with the Scalable Brain Atlas allows for 3D visualization capabilities. (D) Maximum 
projection plot across the coronal planes defining the anatomical boundaries, the intensity volume and the 
somatodendritic distribution of the VPM.
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INTRODUCTION/MOTIVATION

The human brain changes during healthy aging with large individual variation in the cognitive decline [1]. Sources and 

mechanisms of this variability are not understood and have been previously linked with whole-brain 

reorganisation, specifically in terms of the white-matter fibre tracts (structural connectivity, SC), and functional co-

activations (functional connectivity, FC) of brain regions [2,3], e.g. hemispheric asymmetry reduction. Here we present a 

causal framework of virtual twin modelling where the individual SC informs a computational brain network model [4]. 

Within this framework we can integrate structural and functional cohort-level trends, and also operationalize hypothesised 

mechanisms of aging individually by modifying specific SC links, and systematically evaluate the impact on the brain dynamics. 

This Showcase employs whole-brain modelling on structural variability to formulate causal hypotheses about brain 

mechanisms and to explain functional variability across individuals based on cutting edge datasets. Its implementation is 

fully embedded in EBRAINS and freely available, providing a reusable template for researchers aiming to use EBRAINS services 

in their work.

METHODS

We used the SC and regional BOLD signal of older subjects from the 1000BRAINS dataset [5] (n=649, age range [51.1−85.4], 

nfemales=317). From the BOLD time series we computed data features based on both the static FC, and the time-variant FC 

dynamics (FCD).

Based on The Virtual Brain, the brain network model [6] was constructed from individual SC with the neural mass model [7] 

governing the node dynamics enabling simulation of resting-state BOLD data. For each subject we performed a 

parameter sweep over coupling parameter G to identify the optimal working point of the system where FCD fluidity σ2 

is maximised and computed the same functional features as for the empirical data. Next, we have virtually aged the 50 



youngest subjects by gradually decreasing the interhemispheric connections and repeating the procedure for each time 

point. Finally, Simulation Based Inference (SBI) was used to compute the posterior estimate of the global modulation from 

the empirical data [8] to validate the proposed framework..

The showcase is implemented as a series of jupyter notebooks in the interactive computing environment of the EBRAINS 

Collaboratory [9]. These integrate a broad spectrum of EBRAINS services including the Knowledge Graph, The Virtual Brain, data 

analytics, and offloading the computations to the HPC infrastructure.

RESULTS AND DISCUSSION

Across the 1000BRAINS dataset, we identified a strong decline in interhemispheric SC connections over age accompanied 

with decline both in homotopic FC and FCD fluidity. The trends for both these functional features were recovered in 

simulated resting state data within the virtual model . The same effect was observed for the virtually aged subjects along 

the individual trajectories.

The working point value of the connectivity modulation G increased over age on the individual level, both in the virtually 

aged as well as in the empirical setting. The increase of G was steeper in the subjects with lower cognitive performance.

Taking advantage of the EBRAINS infrastructure, we demonstrate how brain modeling can benefit from a 

coordinated effort of data integration and availability within the same framework as the modelling algorithms. Our 

results indicate that the deterioration of the interhemispheric SC is accompanied by increased modulation of the functional 

brain dynamics. The SC reorganisation might reflect a potential scaffolding of the brain during the ageing process. This effect 

is weaker for the cognitively well performing subjects, which suggests a process of brain maintenance. The here established 

mechanistic framework lays the ground for extending such modelling both towards longitudinal datasets as well as 

inclusion of other factors beyond ‘age’, which is currently being pursued.

Keywords: Brain Network Model, Aging, The Virtual Brain, EBRAINS, Showcase
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Abstract

Virtual brain modeling is a data-driven approach that combines personalized anatomical 

information with mathematical models of brain activity to generate spatiotemporal patterns 

as observed in brain imaging signals. This parametric simulator is equipped with a stochastic 

generative process, which provides the basis for inference and prediction on the local and 

global brain dynamics, such as those affected by disorders. Inference algorithms are required 

to efficiently estimate the unknown parameters (such as regional excitability parameters and 

global scaling factor), ideally including the uncertainty. In this work, we provide flexible and 

efficient Bayesian inference on virtual brain models using state-of-the-art algorithms from 

likelihood-based and likelihood-free approaches. We show the benefits of incorporating prior 

information and inference diagnostics, using self-tuning Monte Carlo strategies for automatic 

and principled statistical inference, and deep learning algorithms for fast and efficient model 

inversion. The performance of these methods is then demonstrated on causal inference and 

prediction in various brain disorders.

INTRODUCTION/MOTIVATION

In contrast to forward modeling, which is a top-down approach, model inversion is a bottom-

up strategy that infers hidden causes from observed effects [1]. We aimed at making flexible, 

efficient, and accurate inference on the local and global brain dynamics, to reveal the 

mechanism underlying disorders, such as epilepsy, alcohol use disorders, and Alzheimer’s 

disease. This requires the integration of various sources of information, such as neural 
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networks, anatomical data, empirical observations, and advanced probabilistic machine 

learning techniques, in a unified framework called Bayesian inference, as we aim to perform 

in this work.

METHODS

In practice, to carry out Bayesian model inversion, we can use either Monte Carlo sampling 

(such as Hamiltonian Mote Carlo, in automatic tools such as Stan) which is asymptotically 

unbiased, or simulation-based inference (using deep neural networks), which is 

computationally fast and efficient.

RESULTS AND DISCUSSION

Our results indicate that SBI and HMC can efficiently estimate the full posterior distribution 

of virtual brain parameters (a local bifurcation parameter at each brain region characterizing 

the regional epileptogenicity and a global coupling parameter scaling the structural 

connectivity of patients), from LFP/sEEG/EEG/MEG/fMRI recordings, but each has its own 

advantages and disadvantages, depending on the type of neuroimaging measurements (Refs 

2-6). Also, the calculation of likelihood function —an essential ingredient for both frequentist 

and Bayesian inference methods—determines to which algorithm is more efficient for a 

specific neuroimaging data set. The methodology is illustrated for in-silico dataset and then, 

applied to infer the personalized model parameters based on the empirical stereotactic 

electroencephalography recordings of retrospective patients. In sum, our Bayesian 

methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the 

way for fast and reliable inference on brain disorders from neuroimaging modalities.
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Introduction

Isolation wreaks havoc upon the human brain. Keeping in mind our gregarious nature it 
would stand to reason that social stimuli could significantly modulate our cognition. Mere presence 
is the most fundamental form of social stimuli and it’s been shown to improve behavioral 
performance depending in simple tasks (social facilitation) 1. However, the literature surrounding the 
neurobiological bases of social facilitation is rather sparse, with one of the most promising findings 
being the discovery of presence/absence sensitive reward-oriented neurons in dorsolateral prefrontal 
cortex (dlPFC), and anterior cingulate cortex (ACC) of Rhesus monkeys4. Based on the same primate 
dataset, we identified a similar context-dependent trend in the feedback-locked event-related 
potentials (ERPs), with increased ERP amplitude in the presence condition. We employ the framework 
of Dynamical Causal Modelling (DCM) in order to infer the parameters of a neural mass 3 (Jansen-Rit) 
between the two experimental conditions. Our results show that synaptic model parameters are 
significantly different between the presence and absence conditions. We hypothesize that this 
difference in the parameter distributions leads to changes in the postsynaptic excitation/inhibition 
(E/I) balance in the region.

Figure 1 Feedback-locked ERPs obtained from absence & presence condition during successful trials.

Methods

We model the activity of a region via a modification of the Jansen-Rit model, a neural mass model of 
three subpopulations in a cortical micro-column 3. The model is capable of producing sustained oscillations, evoked

responses, and epileptic-like activity, with the LFP signal assumed to be proportional to the 
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depolarization of pyramidal cells. Dynamical causal modelling allows us to obtain the parameter 
distributions which best explain the observed data (ERP time series) via Bayesian inference. More 
formally, given model parameters θ, and observation data y, we update the uncertainty in parameter 
estimation by multiplying our domain expertise 𝑝(𝜃) (or prior) with
a data generative process 𝑝(𝑦|𝜃) (likelihood) in order to calculate the posterior probability distribution 𝑝(𝜃|𝑦):

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃)

However, this data generative process is usually analytically intractable. Markov chain 
Monte-Carlo algorithms are therefore utilized to draw random samples from the posterior, bypassing 
the necessity for knowing the entire distribution. A state-of-the-art variation of this algorithm, -
namely Hamiltonian Monte-Carlo (HMC)- alleviates the shortcomings of normal Monte-Carlo 
algorithms such as random walk, and enables us to acquire the true posterior distribution 2,5,6, which is 
especially critical for models with high degeneracy such as the Jansen-Rit model.

Results & Discussion

The parameter distributions obtained from HMC show that the majority of between-condition 
changes to model parameters is stemming from rate constants, maximum postsynaptic potential 
amplitudes (PSPs), external current, and initial conditions. In the presence condition inhibitory rate 
constant and excitatory postsynaptic amplitude is increased while the excitatory rate constant is 
decreased. An opposite trend is seen in the absence condition. Changes to these parameters lead to 
alterations to the ratio of excitatory and inhibitory postsynaptic potentials with presence exhibiting a 
lower E/I ratio. In fact, the larger pyramidal activity in the presence condition might be a compensatory 
response to the increased IPSP.

Figure 2 HMC-derived distributions of excitatory (e) & inhibitory (i) synaptic parameters. Here, T represents rate constant and h the maximum amplitude of PSPs.

We suggest a novel analysis pipeline in order to non-invasively investigate how mere presence 
of conspecifics alters dynamical -synaptic- characteristics of a cortical microcolumn. The caveat to use of 
the Jansen-Rit model however, is the high correlation between parameters. This signifies that changes 
to the synaptic conductance should best be evaluated by calculating the collective effect of the 
parameters.

Keywords: Social facilitation, Event-Related Potentials, Dynamical Causal Modelling, Excitation/Inhibition Balance
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INTRODUCTION/MOTIVATION

Subcellular signaling pathways describe how a series of molecular reactions within the cell regulates some cellular function, 

like modifying the strength of a synapse. Such pathways are often modeled on a resolution corresponding to 

concentrations of molecules and the dynamic quantitative data they reproduce can consist of time series experiments e.g., 

measuring protein activity using FRET technology or similar. It is crucial to understand signaling pathways to understand 

cellular function and thereby the effects of different drugs or disease mechanisms.

Mathematically, pathway models consist of a set of interacting species, often represented by a graph, together with 

corresponding dynamical equations describing the rate of change of species concentration or activity. Pathway models 

thus have the potential to integrate bioinformatics data on e.g., protein interactions and function with dynamical data 

on protein activity in a data-driven fashion. Data-driven modelling requires efficient and automatic methods for model 

calibration and validation, as well as a structured way of representing the model, experimental data and calibration 

process. Within this project we have developed a toolset, UQSA, that can achieve this. UQSA stands for Uncertainty 

Quantification (UQ) and Sensitivity Analysis (SA). UQ is important to validate a model. Typically, this means that in the 

parameter estimation process, the estimates are given together with descriptions of their uncertainty (Figure 1). This 

uncertainty can then next be propagated to the predictions from the model (Figure 1) and allow for well informed 

comparison with experiments. SA is another tool for model assessment.

METHODS

This toolset includes methodological developments concerning efficient and statistically relevant approaches for UQ and SA 

based on Bayesian methodologies [1]. It also includes technical developments mainly concerning the

FAIR management [2] of not only experimental data and models, but also the whole workflow (model setup, calibration 

and model validation) [3, 4].

Concerning methodology, UQSA performs UQ by sampling from a distribution of good parameter values (the posterior 
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distribution), rather than providing a single optimal point. This sampling is implemented via Markov Chain Monte Carlo 

(MCMC) methods, using an Approximate Bayesian Computation (ABC) scheme. A so called copula [1] is then fitted to the 

MCMC samples. This offers the possibility to add datasets sequentially to fit a model, by using the posterior of previous 

datasets as the prior for UQ with new datasets. The UQ procedure can next be followed by a variance-decomposition 

based global SA to quantify the uncertainty in the model predictions (Figure 1).

Concerning technical developments, UQSA adopts SBtab [5], an easy-to-use, human and machine readable format to 

store information about reaction based models and calibration data. A software is also available for transferring the SBtab 

files to SBML [6] or MOD [7] and thus provides the possibility to run the same model in simulators like e.g. STEPS, COPASI , 

NEURON or Matlab. SBtab therefore contributes to making the UQSA workflow fulfill the FAIR principles.

The main part of the code is written in R. R, apart from being a user-friendly language, allows the use of 

sophisticated statistical methods. The core part of the code is, however, in C in order to be computationally efficient.

Figure 1 The uncertainty quantification starts from a model structure, quantitative data and prior (starting) 

assumptions on parameter distributions, then parameter estimation and uncertainty quantification are performed giving rise 

to a possible parameter distribution (posterior), which is in agreement with the quantitative data. Finally, a sample 

from the posterior distribution is propagated to the predictions of the model, and thereby describing the uncertainty 

of the model predictions. A sensitivity analysis can also be performed to e.g. guide further experiments. The figure is 

reproduced from [3].



RESULTS AND DISCUSSION

We present a toolset for data-driven pathway modelling, that includes Bayesian UQ and global SA. It has been tested on a 

number of different models and experimental data, including a model for PKA binding to AKAP79 [8], a model on CaMKII 

dynamics [1], and a model for AKAR4 activation. Source code and more information are available as part of the EBRAINS 

Subcellular pathway model building and calibration toolset: https://wiki.ebrains.eu/bin/view/Collabs/subcellular-

modeling-and-simulation/.

Figure 2 Uncertainty in the predictions from the AKAP79 model [8], corresponding to an ensemble model. The 

experimental data (black dots, first row, first three columns) have not constrained the model enough to give e precise 

prediction (first row last two columns). Blue and red correspond to a further classification of “good” and “bad” fits. Figure 

is an excerpt from [8].

Keywords: Data-driven modelling, Signaling Pathway, Uncertainty Quantification, Global Sensitivity Analyses, FAIR, Workflow, 

Dynamical modelling

ACKNOWLEDGEMENTS

This work was supported by the European Horizon2020 Framework Programme under grant agreement 945539 (The 

Human Brain Project, SGA3); the Swedish Research Council; the Swedish e-Science Research Centre (SeRC); AstraZeneca provided 

support in the form of salary for author AJ. Simulations were performed on resources provided by the Swedish National 

Infrastructure for Computing (SNIC) at the PDC center for High Performance Computing.

https://wiki.ebrains.eu/bin/view/Collabs/subcellular-modeling-and-simulation/
https://wiki.ebrains.eu/bin/view/Collabs/subcellular-modeling-and-simulation/


REFERENCES

[1] Eriksson, O., Jauhiainen, A., Maad Sasane, S., Kramer, A., Nair, A. G., Sartorius, C., & Hellgren Kotaleski, J. (2019). 

Uncertainty quantification, propagation and characterization by Bayesian analysis combined with global sensitivity analysis 

applied to dynamical intracellular pathway models. Bioinformatics, 35(2), 284-292. doi: 

https://doi.org/10.1093/bioinformatics/bty607

[2] Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., ... & Mons, B. (2016). The FAIR 

Guiding Principles for scientific data management and stewardship. Scientific data, 3(1), 1-9. doi: 

https://doi.org/10.1038/sdata.2016.18

[3] Eriksson, O., Bhalla, U. S., Blackwell, K. T., Crook, S. M., Keller, D., Kramer, A., ... & Hellgren Kotaleski, J. (2022). 

Combining hypothesis-and data-driven neuroscience modeling in FAIR workflows. Elife, 11, e69013. doi: 

https://doi.org/10.7554/eLife.69013

[4] Santos, J. P., Pajo, K., Trpevski, D., Stepaniuk, A., Eriksson, O., Nair, A. G., ... & Kramer, A. (2022). A Modular Workflow for 

Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience.

Neuroinformatics, 20(1), 241-259. doi: https://doi.org/10.1007/s12021-021-09546-3

[5] Lubitz, T., Hahn, J., Bergmann, F. T., Noor, E., Klipp, E., & Liebermeister, W. (2016). SBtab: a flexible table format for 

data exchange in systems biology. Bioinformatics, 32(16), 2559-2561. doi: 

https://doi.org/10.1093/bioinformatics/btw179

[6] Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., ... & Wang, J. (2003). The systems biology markup 

language (SBML): a medium for representation and exchange of biochemical network models.

Bioinformatics, 19(4), 524-531. doi: https://doi.org/10.1093/bioinformatics/btg015

[7] Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON's repertoire of mechanisms with NMODL.

Neural computation, 12(5), 995-1007. doi: https://doi.org/10.1162/089976600300015475

[8] Church, T. W., Tewatia, P., Hannan, S., Antunes, J., Eriksson, O., Smart, T. G., ... & Gold, M. G. (2021). AKAP79 

enables calcineurin to directly suppress protein kinase A activity. Elife, 10, e68164. doi: 

https://doi.org/10.7554/eLife.68164

https://doi.org/10.1093/bioinformatics/bty607
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.7554/eLife.69013
https://doi.org/10.1007/s12021-021-09546-3
https://doi.org/10.1093/bioinformatics/btw179
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1162/089976600300015475
https://doi.org/10.7554/eLife.68164


13. Neural correlates of predictions and prediction 
errors during multisensory object discrimination in 
the rat somatosensory barrel cortex

Francesco Mannella1*, Thijs R. Ruikes2*, Pietro Marchesi2, Julien Fiorilli2, Federico Maggiore 1, Cyriel

M.A. Pennartz2, Giovanni Pezzulo1

1 Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy

2 Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of 

Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.

Corresponding Authors: francesco.mannella@gmail.com, t.r.ruikes@uva.nl

Keywords: whisking, active inference, prediction error, barrel cortex

INTRODUCTION/MOTIVATION

Rodents actively sense their environment through whisking. During whisking the animals maintain an internal belief 

about their distance from the objects in their environment. Recently, we proposed a computational model based 

on the active inference framework, which characterizes rodents anticipatory and error-correction dynamics during whisking 

[1]. The model explains whisking behaviour and neural activity in terms of prediction error minimization dynamics [2]. 

During simulations of the model, internal variables are updated based on multisensory input from proprioceptive, 

tactile and visual modalities. Errors between predicted and sensed observations are used to update probabilistic beliefs 

about object identity and to adjust whisking amplitude in object-dependent ways. In the current project, we fit the 

model parameters to empirical data recorded from free behaving rats performing a multisensory object-discrimination 

task. Rats were tasked with discriminating between two objects using tactile, visual or both modalities [3]. High-speed 

videography of whisker kinematics and neural recordings from somatosensory cortex were simultaneously 

recorded. By fitting the animal's whisking kinematics on a trial-by-trial basis, the computational model generates synthetic 

timeseries (i.e., trial- specific series of predictions and prediction-errors during animal-object interactions) that we aim 

to compare with neuronal activations in somatosensory barrel cortex.
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METHODS

Computational model of prediction and prediction errors in the somatosensory barrel cortex

The computational used for the analysis casts whisking behavior in terms of active inference [1]. Fig. 1 shows the key 

variables of the active inference agent's generative model (Fig. 1 right) and their putative links with neuroanatomy 

(Fig. 1, left). The circles shown in the right part of Fig. 2 represent the model variables (which correspond to probabilistic 

beliefs), whereas the edges correspond to statistical relations between variables. The variables comprise sensory 

observations (in different modalities, touch, proprioception and vision) and a hierarchy of hidden states and causes at 

two levels, sensorimotor and decision-level. The left part of Fig. 1 schematically maps some of the key model variables 

to the neuroanatomy of rats. Colored circles represent the variables of the generative model, whereas the ξ symbols 

represent prediction errors. Colored edges show the putative (neuronal) message passing between the model 

variables. The most notable aspect is the presence of reciprocal, top-down and bottom-up messages across 

hierarchical levels. For example, the red edge originating from the v (causal) variable represents a top-down signal. Blue 

edges originating from the ξ symbols represent prediction errors that are propagated bottom-up. See [1] for more details 

about the model.

Figure 1. Schematic of the computational model of whisking behavior used for the analysis. Left: schematic overview of the 

neuroanatomy associated with each model variable. Right: overview of the generative model for active sensing.



Neural recordings from rat somatosensory barrel cortex during object discrimination

Neural activity from somatosensory barrel cortex (S1BF) was recorded from free behaving rats (167 cells), which 

performed a multimodal object recognition task on an elevated T-maze (Fig. 2). Objects were presented in visual (light on), 

tactile (object in reaching distance) or visual & tactile (both light on and object in reaching distance) modalities. Upon 

object presentation, the animal was tasked to navigate to the arm of the maze associated with the presented object. 

Animal behaviour was tracked using photo-diode sensors and high- speed videography during object detection. The 

latter allowed us to tracking whisking movements during object detection.

Figure 2; multisensory object detection task. Following a 7-10 second inter trial interval (ITI), to rats could access the 

object sampling area. Here, an object was presented in Visual, Tactile & Visual or Tactile modality. Following the detection 

of the object, the animal should report its choice by poke the reward site (black, on either side of the maze) associated 

with the presented object.



Estimating prediction errors during whisking

The prediction errors during whisking can be estimated based on the animal behaviour. When the animal 

approaches the object for detection, it will generate a default whisking amplitude and frequency (predictive whisking). 

Upon touching the object, the whisking motion is interrupted and the animal updates its whisking cycle (reactive 

whisking). This causes desynchronization of the whiskers due to deceleration. We quantify whether the animal is 

whisking predictively or reactively by measuring the desynchronization, which can be used to estimated prediction 

errors inferred by the active inference model.

Results and Discussion

We have completed data acquisition from our experiments and setup our analytical methods to use the model predictions 

to investigate the neural data. During the poster presentation, we will present the first outcomes of our ongoing research.
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INTRODUCTION/MOTIVATION

Structured flows on attractive manifolds prescribe the evolution of low-dimensional dynamic systems, which can be 

interpreted as internal models in cognitive theories. We identify basic properties of neuronal populations leading to an 

equivariant matrix in a network, in which complex behaviors can naturally be represented through structured flows on 

manifolds. We propose a neural mechanism for the generation of structured flows on manifolds from symmetry 

breaking in the connectivity of brain networks. We show in particular how decorrelation of oscillatory behaviors of the 

network nodes is essential for the emergence of the manifold and its flows.

METHODS

We elaborate on the analysis of a minimal simple toy model in which a single node dynamics allows for jumpings between an 

up and a down state (bistable system). We present a numerical exploration of the dynamics, in which we further apply 

different manifold extracting techniques to extract the resulting low-dimensional topology and the associated flows; first 

for the case of a two-node system, and then for the more complex case of a high- dimensional network on which the 

two-nodes dynamics emulate the dynamics of two-modes of behavior that are distributed through an orthogonal projection 

across a network on a full connectome.

Two coupled nodes are embedded in a larger network through an orthogonal 

transformation. SFA uncovers the low-dimensional manifold comprised of the 4 original 

subspaces around the equilibrium points of the embedded two-modes system. Simulated time series 

are generated tuning the coupling (G=0.07) and the noise (v=0.03) and by using standard parameters 

of sksfa.SFA function in the sklearn-sfa package.

RESULTS AND DISCUSSION

Narrowed down to the forces present in brain networks, we linked basic properties of neural masses and networks to the 

emergence of invariant manifolds in state space, which are the carrier of structured flows known from behavioral 
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neurosciences. The flows on the low-dimensional task-specific manifolds capture, in abstract state space, the mechanistic 

manifestation of entropy as constructive irreversibility in the brain, and thus, serveas a principal enabling link between 

neural activity and behavior. In this work, in particulare, we want to serve a proof- of-concept demonstration of the action 

of decoupling (decorrelation) through frequency separation as a mechanism for the generation of low-dimensional 

subspaces in high-dimensional systems.
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INTRODUCTION/MOTIVATION

Computational neuroscience is experiencing a steady growth in available simulation tools applicable to 

morphologically detailed cell descriptions [5, 1, 9, 3, 7, 8]. However, the development of portable models lags behind. 

NeuroML2 (NML) is one of the few comprehensive approaches in this area, but its reference implementation lacks 

in performance and scalability [2]. Our goal is to enable Arbor, a performance -portable library for simulating 

morphologically detailed neurons to consume NML models. We present nmlcc, a tool to generate optimised, full scale 

simulations from a description in NML. It produces bespoke dynamics tailored to the input, resulting in performance 

metrics comparable to hand-optimised code. Through Arbor, the generated simulation package is able to utilise modern 

hardware, including large-scale GPU clusters, scaling to millions of cells [7].

METHODS

nmlcc needs to produce inputs tailored to Arbor, that is: cell morphologies, ion channels, cell parameterisations, and network 

connectivity. As NML can synthesise new ion channels on the fly, nmlcc cannot rely on a static list of channel descriptions. As 

simulations in an NML description provide a fully integrated picture, nmlcc can exploit this holistic view to optimise input 

decks beyond what is possible for Arbor out-of-the-box. Ion channels are typically among the most demanding parts 

of the simulation, thus an emphasis is placed on making them as performant as possible.

RESULTS AND DISCUSSION

As can be seen in Fig. 1 nmlcc can generate an input deck that runs roughly nine times faster on Arbor 

(arbor+nmlcc) than NEURON using the jnml NML reference implementation (baseline). Part of this is a 

performance advantage intrinsic to Arbor, which runs about four times faster than the baseline. However, even with the 

CVODE timestepping available to NEURON, the arbor+nmlcc simulation – using a fixed timestep – is still substantially faster. 

The advantage of the CVODE scheme will degrade when exposed to high-frequency inputs, which makes it unattractive in 

network simulation. We have demonstrated a way to convert generic, high-level descriptions into bespoke simulations 

competitive with hand-optimised code. This is made possible by exploiting the holistic view provided by NML. Further, 

tailoring generic ion channels to a specific simulation is only feasible via automated translation and optimisation. Overall, 

nmlcc enables researchers to convert NML models to Arbor using a single command and expect to obtain a high- 

performance simulation that can trivially be adapted to (GPU-accelerated) HPC systems.
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INTRODUCTION/MOTIVATION

The brain can be seen as a highly interconnected network, that generates spontaneous activity and expresses its 
own spatiotemporal dynamics even in the absence of inputs. This network can express different brain states, 
characterized not only by their different emergent patterns but also by the resulting behavior. The responses to 
stimulation (endogenous or exogenous) or responsiveness is also highly informative regarding the state of the 
underlying network, its excitability and encoding capabilities, between others. Therefore, stimulation or 
perturbation, is an efficient way to probe the functional state of the network, having a diagnostic power in the 
clinical realm, but also a great value from the experimental and computational perspective.
It is known that the brain’s spontaneous activity emerges as the result of the integration of multiple factors, 
including, among many, the intrinsic electrophysiological properties of single neurons [1] and the synaptic 
interactions among them [2], which are modulated by neuromodulatory systems [3] and reflected in the 
behaviour [4]. Here, we aim to investigate the relation between spontaneous activity and brain responsiveness at 
the micro and mesoscale levels from both experimental and computational perspectives.

METHODS
This study is the first part of a large-scale collaboration across different HBP-member laboratories. Our aim 
together has been to integrate knowledge, in the form of a Live paper (EBRAINS Live Papers), of the state-
dependent brain responsiveness across different scales and species and its dependence on the brain state. “Live” 
figures will be hosted in EBRAINS accompanied by the data and models allowing to reproduce them. The aim of 
the Live figures is to create an environment where one will be able to directly interact with the data and models, 
enabling an online execution of the analysis pipelines and simulations, providing then an avenue for new 
discoveries.



RESULTS AND DISCUSSION

Fig.1 A: Bifurcation diagram with the different dynamical regimes when moving in the excitation or adaptation directions. B: Representative 
traces of simulated activity from points in panel A. C: Patterns of response to auditory stimulation.

Cortical responsiveness at the level of simulated networks of cortical neurons is first examined. To have a 
computational approach to the dynamic space ranging from synchronous (e.g., sleep) to asynchronous states 
(e.g., awake), we first present a dynamic phase diagram, that covers different dynamical regimes observed across 
brain states can be achieved by modulating two specific features of the microscopic circuit: the strength of the 
firing-rate adaptation and the excitation level [5]. An excitation-adaptation plane [6] (Fig.1A) can be worked out 
and the network can be trapped in an asynchronous irregular regime or express slow oscillations (SO), for 
example. By perturbing the network, different state-dependent evoked responses are obtained. When the 
adaptation is higher, the stimulation elicits synchronized off-periods (or Down states), not visible in the lower 
adaptation (wake-like) scenario (Fig. 1B).

If we investigate sensory stimulation, the patterns of evoked auditory responses vary with the brain state, and 
this is illustrated when imaging the same population of neurons in the primary auditory cortex of awake and 
anesthesized mice (Fig. 1C). The correlation between spontaneous and evoked patterns was high in anesthesia 
and low during awake, suggesting that the fine structure of the evoked responses can reveal if the stimulus has 
been perceived or not [7] (Fig.1C).

We investigated the visual-evoked responses in the primary visual cortex of awake monkeys, which triggered 
travelling waves [8], providing mesoscale information about the cortical area. Spontaneous travelling waves had 
their origin at random sites, while evoked ones were more homogeneously organized [8] (Fig.2A). To explore this 
phenomenon, a mean field model was employed [9], where simulated travelling waves, evoked by a single input, 
were compared with more complex patterns of travelling waves evoked by multiple inputs. Finally, another mean-
field model, whose connectivity is inferred from experimental data [10], reproduced how the response to focal 
stimulation is also state- dependent, with no propagation at low excitability, and a global wave pattern when 
excitability is high (Fig. 2C).



Fig.2 A: Spontaneous versus evoked travelling waves. B: Modelled travelling waves. C: Simulated evoked responses under different levels of 
excitability.

As mentioned above, the responsiveness of the network depends on different factors, including network 
excitability, adaptation or spatial functional connectivity. A measure capable of integrating various of these 
factors and the complexity of evoked responses is the Perturbational Complexity Index (PCI), which has been 
used in different systems, both experimental and computational. PCI- related data and models at the meso and 
whole-brain scales will be shown in the accompanying poster (part B).

Keywords: Brain states, responsiveness, circuit, cortical network, model, imaging, awake, anesthesia
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INTRODUCTION/MOTIVATION

The brain can be seen as a highly interconnected network, which generates spontaneous activity and expresses 
its own spatiotemporal dynamics even in the absence of inputs. The brain network can express different brain 
states, which can be characterized not only by their different emergent patterns but also by the resulting 
behavior. The responses to stimulation (endogenous or exogenous) or responsiveness is also highly informative 
regarding the state of the underlying network, its excitability, or encoding capabilities, between others. 
Therefore, stimulation or perturbation, is an efficient way to probe the functional state of the network, having a 
diagnostic power in the clinical realm, but also a great value from the experimental and computational 
perspective. It is known that the brain’s spontaneous activity emerges as the result of the integration of multiple 
factors, including, among many, the intrinsic electrophysiological properties of single neurons [1] and the 
synaptic interactions among them [2], which are modulated by neuromodulatory systems [3] and reflected in the 
behaviour [4]. Here, we aim to provide a review on the relation between spontaneous activity, brain 
responsiveness and complexity at the whole-brain level. Importantly, the first part of this review, regarding the 
study of responsiveness from micro to meso-scale, is available in the accompanying poster (part A).

METHODS
This study is the second part of a large-scale collaboration across different HBP-member laboratories. Our aim 
together has been to integrate knowledge, in the form of a Live paper (EBRAINS Live Papers), of the state-
dependent brain responsiveness across different scales and species and its dependence on the brain state. “Live” 
figures will be hosted in EBRAINS accompanied by the data and models allowing to reproduce them, hence the 
name “Live” figures. The aim of the Live figures is to create an environment where one will be able to directly 
interact with the data and models, enabling an



online execution of the analysis pipelines and simulations, providing then an avenue for new discoveries.

RESULTS AND DISCUSSION

Fig.1. Experimental Data. A: Calcium imaging experimental setup, representative activations across different anesthesia levels and 
corresponding PCI values. B: Representative traces collected during electrical stimulation from a Utah array implanted in prefrontal cortex 
of a monkey. C: Electrophysiological stimulation and recordings in rodents: experimental setup, representative activations across different 
anesthesia levels and corresponding PCI values. D: Electrophysiological recordings in human across scales and stimulation methods 
(magnetic vs electric), and corresponding PCI values.

In our review we report a set of experiments which studied the brain's responsiveness at the meso and macro 
scale. Different experimental models such as calcium imaging in rodents (Fig1A) and electrophysiological 
recordings in non-human primates (Fig1B), rodents (Fig1C) and humans (Fig1D) were used . A variety of 
techniques were used to stimulate the brain, including both peripheral and direct stimulation as well as invasive 
(single pulse electrical stimulation) and non-invasive (transcranial magnetic stimulation) stimulation. The 
complexity of the brain response to stimulation was gauged by means of Perturbational Complexity Index (PCI), 
a theory-based measure of clinical disorders of consciousness [5]. This set of experiments has provided valuable 
insights into the complexity of the brain's response to stimulation.



Fig.2 Simulation at the whole-brain level. Brain network model with nodes equipped with three models: Hopf (B,C), MPR (G,H,I), and AdEx 
(D,E,F) used to ask mechanistic questions. Hopf tuned to sub-/super-critical regimes and perturbed with varying strength; PCI varied in sub-
crit. regime, no response in super-crit. (D) Wake-/sleep-like states for spatio-temporal prop. of stimulus. (E) Excitatory firing rate 
before/after stimulus. (F) Perturbation complexity index in b & strength. (G) MPR measures fluidity & Lempel-Ziv complexity. (H) Three 
EEG measures track PCI in 18 subjects. (I) Stimulus trials separate from 1-min. segments in # unique states.

Computational models of the brain at the whole-brain level have the capacity to capture various aspects of brain 
responsiveness. Three models are discussed: the Hopf model [6], the AdEx model [7], and the Montbrio-Pazo-
Roxin (MPR [8]) model (Fig2A). The Hopf model has been used to reproduce resting state neuroimaging data 
(Fig2B-C), while the AdEx model has been used to explore the effect of varying the adaptation and stimulus 
strength (Fig2D-F). The MPR model has been used to explore the relationship of the complexity of the stimulus-
response to complexity-based measures of spontaneous activity (Fig2G-I). Each model has been used to examine 
the role of structural connectivity, spatial gradients of brain organization, and brain dynamical states in the 
shaping of the response to stimulus. These and other examples will be shown in the poster along with interactive 
executions of the live figures.

Keywords: Brain states, responsiveness, complexity, cortical network, model, imaging, awake, sleep
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INTRODUCTION/MOTIVATION
Stimulation plays a key role in advancing our understanding of cortical dynamics. By perturbing the brain, we 
are able to obtain an insight into the mechanisms and functions that regulate cortical activity and to detect 
differences across various brain states [1] or within individual dynamical regimes [2, 3]. Furthermore, we also 
get valuable information about potential therapeutical tools to modulate brain activity and their precise 
mechanisms.

Emergent collective behavior in cortical networks can be entrained by sinusoidal electric fields with an 
intensity similar to its endogenous electric field [4, 5]. As such, transcranial alternate current stimulation 
(tACS) has the potential to modulate brain oscillations in a frequency-specific manner, offering the 
possibility to demonstrate a causal nature of oscillation behavior relationships [6]. However, the exact 
mechanism by which weak electric fields can modulate the dynamics of cortical networks at different scales, 
including the microscopic, mesoscopic and macroscopic, remains unclear.

Using a perturbative approach (tACS), we examined a particular brain state that arises under 
unconscious states, such as in slow wave sleep or under anesthesia: the slow oscillation (SO), which is a global and 
synchronized network phenomenon that engages neurons throughout the cortical system and has been 
suggested to be the default mode of the cerebral cortex [7].

By means of recording local field potentials in the cerebral cortex in vitro, we investigated the 
emergent collective behavior of cortical networks resulting from the modulation with sinusoidal electric 
fields. Computational simulations were also performed in order to better understand how neurons are 
orchestrated to reproduce the experimental observed phenomena.

METHODS

To study the effects of tACS at the population level in the cerebral cortex, we applied a set of amplitudes 
ranging from ±1 to 5 V/m within a low-frequency range (0.05-1 Hz) of alternating current electric fields to in 
vitro cortical slices exhibiting spontaneous SO.

To obtain a better understanding of the cellular, network, and AC-intrinsic rhythm interaction, we used a 
model of the cortical network composed of excitatory and inhibitory spiking neurons that can reproduce the 
spontaneous activity of cortical slices [8]. This model enabled us to explore whether frequency-varying 
stimulation modulating single-neuron excitability can replicate the collective behavior observed in 
experiments.

mailto:martinacortadaperez@gmail.com


RESULTS AND DISCUSSION
We quantified the amplitude- and frequency-dependent modulation of cortical spatiotemporal 
patterns. Entrainment with the exogenous sinusoidal current injection occurred in a specific range of frequencies, 
depending on the electric field strength. For example, a minimum intensity of 2 V/m was required for 
entrainment to occur at approximately 0.5 Hz. Furthermore, the larger the perturbation amplitude, the 
broader the range of frequencies in which the system synchronizes with the sinusoidal stimulation.

Additionally, using the model we found that even small changes at the microscopic level in neuronal excitability 
can be amplified by the nonlinear and collective dynamics of cortical networks, leading to phase locking between 
sinusoidal field stimulation and spiking activity. This supports the idea of a true multiscale phenomenon.

The results highlight the opportunity for a frequency-specific modulation of the states exhibited by the 
cortical network at both the micro and mesoscopic levels. The next question to address is: to what extent can we 
also modulate the macroscopic state and transition to different regimes?

Keywords: tACS, entrainment, electric fields, cortical network, computational model
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INTRODUCTION/MOTIVATION

The brain expresses a variety of states that are associated with different consciousness levels, behavioural states (quiet 

wakefulness, sleep, attentive...), or cognitive states (such as attention, memory, and decision-making). The cerebral cortex 

spontaneously elicits different spatiotemporal patterns of activity that changes over time according to the brain 

state. Brain state transitions from unconscious to conscious states are accompanied by changes in parameters such as 

cortical complexity, connectivity, synchronization, and by a modulation of the excitatory-inhibitory network balance. In 

this work we have focused on the multiscale characterization of brain states and their transitions, since it is a 

fundamental link between experimental, theoretical, and clinical observations, as well as to the development of 

strategies to restore physiological activity in pathological conditions. The phenomenological correlates of such 

transitions have been observed in the cerebral cortex at multiple scales, i.e., at microscale in cortical slices in vitro, at 

mesoscale in cortical areas in vivo and at macroscale at whole brain level.

METHODS

This work comprises experimental, clinical, and computational investigation and modelling for the investigation of different 

brain states. The different included brain states were physiological (natural sleep stages), drug-induced

 (e.g., anaesthesia) or clinical cases (e.g., disorders of consciousness). In short, experimental data acquisition included 

cortical preparations in vitro and in vivo. Recording technologies were electrophysiology (local field potential, 
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multielectrode arrays, EEG) and calcium imaging. Clinical data acquisition included high density EEG and intracranial EEG. 

Computational modelling includes spiking models, mean field models and whole brain networks (The Virtual Brain).

RESULTS AND DISCUSSION

We depart this investigation from the most synchronized physiological activity in the cerebral cortex, slow oscillations 

(SO), the activity that dominates slow wave sleep, deep anaesthesia, and the activity in areas around some brain lesions [1, 

2]. Slow oscillations (0.5-4 Hz in humans) are a default activity pattern of the cortical network to which cortical circuits tend 

to converge when structurally or functionally disconnected [3]. This activity is of cortical origin, and depending on the 

brain states, the thalamus and other connected nuclei modulate them. SO collectively emerge as traveling waves of activity 

across the cortex. We describe how the different parameters that characterize wave propagation act as biomarkers of the 

cortical state [4]. The precise underlying mechanisms were explored in a cortical spiking model, in which changes in the local 

excitability of cortical assemblies explained most slow wave features, characterizing brain state changes without 

modifications of the network connectivity [5]. In this work we systematically compared different computational models that 

have reproduced SO, since these dynamics can be observed consistently in very different systems and simulations. Our own 

computational models show that the critical mechanisms consist in a combination of recurrent connectivity and adaptation 

[5, 6]. As the arousing neuromodulatory input from the brainstem and thalamus increases, and modulation from the 

ascending reticular activation system is altered, cortical circuits and neurons tend to transition out of their default state. This 

transition is associated with measurable signatures across scales: single cells start firing in an asynchronous manner, 

slow waves become less frequent, more asynchronous, high frequency, low amplitude activity becomes dominant, and the 

spectral slope of the EEG flattens. In anesthetized animal models, when the depth of general anesthesia decreased towards 

wakefulness, the slow oscillations measured with local field potential gradually became faster and the firing rate of 

underlying multi-unit activity increased, while the silent periods in between Up states gradually decrease in duration [7]. 

Awakening from NREM sleep or general anesthesia is associated with a transition from EEG activity dominated by slow, high-

power oscillations to a sustained, high frequency activity, with reduced low frequency power. This pattern is consistent across 

species [8]. The synchronous to asynchronous transition can also be seen in whole-brain models, and we have reproduced it 

for three species. The simulations used the AdEx mean-field model which was implemented in the TVB [9]. In the AdEx mean-

field, each node can potentially display asynchronous-irregular activity or slow oscillations with Up and Down states, by 

adjusting the strength of spike-frequency adaptation, which we illustrate as well in Showcase 3. Finally, we relate all 

these findings in experimental and computational models to clinical conditions, such as patients that show slow wave 

activity during wakefulness – i.e., they can open their eyes, wake up and fall asleep at regular intervals, have basic reflexes, 

but they do not show any signs of awareness; for this reason, they have been named Vegetative State, or Unresponsive 

Wakefulness Syndrome patients. It has been recently proposed that this disruption of brain function might be due to a 

massive intrusion of sleep-like dynamics into an awake brain [10].
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Introduction:
The dichotomy of brain structure and function is one of the oldest enigmas in neuroscience. On the one 
hand, individual brains differ from each other while maintaining full functionality within a range of 
normal variability. On the other hand, brain regions themselves differ from each other in different 
aspects, e.g., neuronal densities, cytoarchitecture, or characteristic neuroreceptors [1,2]. State-of-the-
art whole-brain network models (as those previously defined during SGA1 and SGA2) assume cortical 
regions to have identical properties [3]. Showcase 1 addresses this enigma, trying to provide 
mechanistic explanations through the simulation of anesthetic effects.

Methods:
This part of Showcase 1 deals with the scientific and technical challenges faced in the definition of 
whole-brain network models that account for the regional heterogeneity of the brain. We do so by 
developing workflows that integrate several ingredients developed within the HBP: (i) neuroscience 
data – as organized in the brain reference space – in order to account for the region-wise properties, (ii) 
extracted via the Siibra interface [4] from the brain atlases in EBRAINS, (iii) regional dynamics are 
governed by the mean-field AdEx population model, (iv) definition of the whole-brain network model 
within the TVB, and (v) running computationally demanding parametric fitting in the HPC facilities of 
EBRAINS via the FENIX infrastructure.

Results and Discussion:
To demonstrate the enhancement of the explanatory power of the models accounting for regional 
variability we simulate whole-brain resting-state activity in healthy participants in normal awake and 
during anesthesia (in collaboration with WP2). We show how considering the levels of GABAa and 
NMDA receptor densities [5] different for each cortical region, the models more accurately reproduce 
the anesthetic effect of propofol and ketamine.
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INTRODUCTION/MOTIVATION

The hemodynamical changes (blood flow, blood oxygenation) are an indirect measure of neural activity that is at 

the basis of the main brain imaging techniques, such as functional magnetic resonance imaging (MRI). Being a noninvasive 

measure that provides detailed information of function at high spatial resolution (mm), it became a standard method 

used both in research and in the clinic, despite its limitation in the temporal domain. Instead, electrophysiology provides a 

temporally precise (ms or even µs) neural activity detail, about neuronal and even ionic channels mechanisms. Still, 

the exact relation between imaging -or hemodynamics- and electrophysiology is not understood in detail, in part 

for the difficulties imposed using electric cables and equipment in the MRI magnetic field.

Here, we investigate the precise relationship between the blood flow and the electrophysiology, to quantify 

how is their temporal and amplitude relationship, and whether we can predict one from the other. We used a prominent 

brain activity, highly synchronized, that has been proposed to be the “default activity pattern” of the cerebral cortex [1], 

the slow oscillations (SO) or slow waves. Not only they occur during slow wave sleep and anesthesia, but also in 

pathological situations associated to stroke, brain lesions or in unresponsive wakefulness syndrome [2], being 

characterized by a slow oscillation (≤1Hz) that synchronizes large populations of neurons. Not only slow waves are a good 

model for the investigation of the electrical and hemodynamic coupling, but this understanding is highly relevant for 

the clinical translation of diagnostic and therapeutic experimental interventions.

Our objective has been to investigate the spatiotemporal relationship between extracellular neuronal activity 

and hemodynamics during SO. Additionally, we aimed to unveil what features of the hemodynamics can be predicted from 

the electrophysiology signals. For this, the relative cerebral blood flow (rCBF) and 32-local field potentials (LFPs) were 

simultaneously monitored during spontaneous SO activity to explore the underlying correspondence between 

hemodynamics and neural activity.

METHODS

The rCBF and electrophysiology were simultaneously monitored using a synchronized laser speckle flowmetry 

(LSF) and a 32-channel multielectrode array (MEA) covering the entire exposed area of the cortex (Figure 1A, B). SO activity 

was recorded in deeply anesthetized C57BL/6J mice. All procedures were approved by
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the local Ethics Committee.

RESULTS AND DISCUSSION

Slow oscillations consist of periods of activity (Up states) and silent periods (Down states). Up states were observed 

during spontaneous SO activity as low-pass filtered fluctuations in the rCBF signal (Figure 1B). To analyze the relationship 

between the LFP and rCBF we computed the power spectral density (PSD) for both the LFP and rCBF signals (Figure 1C). In both 

cases (rCBF and LFP PSD) we found a peak around 0.25 Hz corresponding to SO frequency. A smaller peak around 1 Hz in both 

PSDs could be due to the occurrence of doublet Up-states. The peak around 2.3 Hz is attributed to the respiration while 

the peak around 4.5 Hz correspond to the heartbeat. We block-averaged the rCBF and LFP responses from all the isolated 

Up-states onset (Figure 1D) and observed that the peak in the rCBF signal was delayed by ~3s on average from the LFP peak.

Figure 1. (A) Experimental setup consisting of the synchronized systems for optical imaging and electrophysiology. (B)

Simultaneous recorded LFP and rCBF signals. Middle panels represent an example of the rCBF imaging in the cortex during and Up-state 
and a Down-state, respectively. (C) Power spectrum density for the LFP and rCBF. (D) LFP (in black) and rCBF (in red) waveform average 
around down to up transitions.

Considering that the rCBF represents a convolution of the LFP we developed a kernel estimator to recover the rCBF 

from the LFP signal. With a simple model based on a first order differential equation with adaptation and using the 

experimental LFP signal as input, we effectively predicted with high degree of accuracy the dynamics of the measured 

rCBF (not shown).

Together, our results demonstrate that the hemodynamics generated by each spontaneous slow wave can be detected 

and measured by means of rCBF. We have also quantified the amplitude, the frequency and the

spatiotemporal relationship between the neuronal activity and the hemodynamic activity for spontaneous waves. 

A simple kernel predicts the hemodynamics from the electrical activity, which can be used in clinical applications. Our 



results create bridges between neuronal activity and brain imaging with promising implications for basic and clinical 

neuroscience.

Keywords: Slow neural oscillations, relative cerebral blood flow, local field potential, cerebral cortex
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Introduction
Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A 
common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP 
receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about 
changes including synaptic long-term depression (LTD) [1]. AKAP79 supports signaling of this type by 
anchoring PKA and calcineurin in tandem [2]. This postsynaptic anchoring protein positions calcineurin 
[3] and PKA type II regulatory subunits
[4] in close proximity via short linear motifs separated by ~ 50 amino acids. Knockout studies are 
consistent with the notion that AKAP79 positions calcineurin to dephosphorylate sites primed by 
protein kinase A to bring about long-term depression [5]. In this study, we investigated the 
hypothesis that AKAP79 also enables calcineurin to directly inhibit PKA in the induction of LTD.

Methods
We applied a combination of experimental and computational approaches. We measured 
calcineurin and PKA activities in vitro using radiometric assays and FRET-based plate-reader assays 
respectively. We used lentiviral delivery of shRNA/replacement sequences to mutate PKA type II 
regulatory (RII) subunits in primary hippocampal neurons, and monitored structural long-term 
depression in dendritic spines using confocal imaging. We simulated direct suppression of PKA by 
calcineurin after building a kinetic model. Parameters were estimated using an approximate 
Bayesian computation (ABC) approach, which included copulas for merging of different 
experimental data sets, and guided by the results of our experimental values [6, 7]. All model 
variants were built using the MATLAB Simbiology toolbox (MathWorks).

Results
Recent observations have shown that PKA RII subunits that have been dephosphorylated at the inhibitor 
site (IS) capture PKA catalytic (C) subunits ~ 50 times faster than phosphorylated pRII subunits [8]. In 
theory, calcineurin could act on pRII subunits to suppress PKA activity. However, pRII subunits are 
poor substrates for calcineurin in the absence of additional factors. We reasoned that the 
anchoring protein AKAP79 might facilitate efficient pRII dephosphorylation by calcineurin by 
increasing the effective protein concentration of pRII for the phosphatase. We confirmed 
experimentally that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory 
subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic 
modelling (summarised in Figure 1), show how AKAP79-enhanced calcineurin activity enables 
suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. 
Experiments with hippocampal neurons indicated that this mechanism contributes toward LTD 
[9].



Figure 1. Summary model of PKA suppression by CN within the AKAP79 complex. Structural and kinetic 
models (upper and lower panels, respectively) of signaling within the AKAP79 complex are shown 
under conditions of either low (A) or elevated Ca2+ (B). Elevated Ca2+ triggers CN (red) 
dephosphorylation of pRII (blue) which shifts C subunit capture from the left- hand square of the 
kinetic scheme to the right-hand square, which features dephosphorylated forms of RII. The 
overall effect is a reduction in the concentration of free C subunits.

Discussion
The observations in this study support a revised mechanism for long-term depression, a 
fundamental neuronal process. Furthermore, this non-canonical mode of PKA regulation may underlie 
many other cellular processes including immune responses and insulin secretion.
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INTRODUCTION/MOTIVATION

Comprehension of Movement Variability is essential for exploring motor performance and motor 

skill learning. Even very trivial movements have considerable variability when repeated across 

trials (1). Earlier studies, which have explored trajectory planning in humans, have shown that the 

motor control system optimizes the trajectories (produce straight and less jerky movements) in a 

specific reference frame (either the joint-space or the hand-space/workspace) (3,4). The current 

study aims at understanding if the choice of such a reference frame for movement execution could 

in turn lead to variability across different movement components at the joint and the end-effector 

levels, using non-human primate model.

METHODS

The kinematic data for this study were recorded from two rhesus macaques during their 

performance of a visuo-motor (sequential landing) task using an exoskeleton robotic arm (Kinarm, 

Bkin). In parallel, extracellular multi-electrode recordings were obtained from multiple cortical 

areas along the visuo-motor pathway (motor areas M1/PMd, parietal areas DP, 7A and visual areas 

V1, V2).

In order to build a deep understanding of the origin of movement variability, the variability of 

different kinematic parameters at joint and end-effector levels were investigated. For a set of 

predefined movements, variability for hand-space/workspace trajectory, joint-trajectory 

(trajectories formed on a 2D abstract space with elbow and shoulder movements being the 2 axes) 

and movement energy demands were characterized and compared, over sessions recorded 

across months.
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RESULTS AND DISCUSSION

Our results show that for each individual movement, the spatial variability of the hand space and 

joint space trajectories have a global covariation across sessions. Yet, this covariation differs 

between movements (Figure 1). We also observe that the relationship between hand and joint 

space variability for each movement tend to be similar for the movements in similar direction. 

The empirical directional tuning of the hand trajectory variability, which we observe exaggerated 

along the NW-SE axis for our data, validates the above-mentioned directional effect (Figure 2). 

Further investigation of the potential reasons behind the directional effect on trajectory 

variability demonstrate a clear correlation between the end-effector variability and rotational 

kinematic energy, suggesting that energy cost (a measure for biomechanical complexity) plays a 

major role in defining the patterns of trajectory variability.

These results show that the origin of movement variability has a complex nature and there are 

different processes spanning through planning, preparation and execution of movements, which 

contribute to movement variability. Further exploration of the cortical data (recorded 

simultaneously with the kinematic data) using the cues from the kinematic results, will help us to 

identify the cortical areas leading to the variability of specific components of movement. The 

insights from this study can be potentially used to trace the sources and therapeutic solutions to 

the neuro-degenerative disorders (e.g., Parkinson's disease, Essential Tremors etc) which cause 

abnormal levels of movement variability.

Keywords: movement variability, trajectory planning, joint-space, hand-space, energy demand, motor control, 

kinarm



FIGURES

Figure 1- Hand-space and joint space spatial variability covariation: The main panel shows the 
covariation between hand-space and joint-space trajectory variability across session. Each shaded 
ellipse with a dashed border shows the distribution of the covariation of the hand and joint space 
variability across sessions for an individual movement, color-coded according to the color palette 
shown in the top panel. The solid circles represent the average covariation for each movement 
group.



Figure 2- Directional tuning of hand-space trajectory variability: The average hand-space 
variability (in cm) is shown for each of the seven movement groups oriented along one of the seven 
directions (N: north, NE: north-east, E: east, SE: south-east, S: south, SW: south-west, W: west, 
NW: north-west)
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INTRODUCTION/MOTIVATION

As neuroscientific research offers a growing wealth of data and methodologies, it becomes increasingly relevant 

to develop integrative approaches that consolidate evidence from multiple experiments, species, and 

measurement techniques. A challenge in understanding brain function is quantitatively comparing and 

combining conclusions from heterogeneous data. Here, we address this challenge in the context of slow wave 

activity (<1 Hz) [1], which is persistently observed across experimental approaches during sleep or anesthesia 

and is a dynamic feature expressed in various network models of neuronal activity. With this expression of a 

single phenomenon across multiple domains, various analytical methods, tools, data formats, metadata, and 

terminologies have emerged. This heterogeneity
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and the intrinsic differences in the recorded data modalities make it difficult to aggregate knowledge across 

scientific studies quantitatively and form a coherent understanding.

METHODS

This study presents the Collaborative Brain Wave Analysis Pipeline (Cobrawap) [2] as an adaptable and reusable 

analysis approach. By bringing together existing methods [e.g. 3,4], standards, and tools in a modular fashion, 

the pipeline is able to serve a wide range of datasets and research questions. In Cobrawap, the heterogeneous 

input data is aligned to a common representation and description of slow wave activity. This allows generalized 

methods to extract common characteristic measures (e.g., wave planarity, frequency, velocity, and direction). 

This approach allows the semiautomatic analysis and characterization of heterogeneous slow wave activity data, 

providing the basis for rigorous comparisons across datasets due to the consistent reuse of methodology. The 

pipeline is Python-based and builds on open-source software tools, such as the workflow manager Snakemake 

[5], EBRAINS tools for handling representation (Neo [6]) and analytics (Elephant [7]) of electrophysiology data, 

and the EBRAINS Knowledge Graph (https://kg.ebrains.eu) for capturing the pipeline execution. We highlight 

ongoing efforts towards making Cobrawap available on EBRAINS resources, such as HPC systems using the 

Unicore engine and the emerging workflow execution engine.

RESULTS AND DISCUSSION

In demonstrating the application of Cobrawap, we pool multiple open-access ECoG and calcium imaging datasets 

and perform comparisons of slow wave characteristics across the corresponding experimental conditions (Figure 

1). In particular, we evaluate the influences of the anesthetic type and dose, replicate previously reported trends 

[8,9], and examine differences between the measurement techniques due to their different spatial resolution. 

Furthermore, we exploit the pipeline’s modular structure by switching between two alternative methods for up-

transition detection to enable a method benchmarking application. Finally, we discuss the reusability of the 

presented analysis pipeline components for similar analysis applications and model development [10] to 

promote the collaborative effort of distilling consistent and comparable conclusions from diverse experimental 

approaches.



Figure 1: Heterogeneous input data, for example, from ECoG or widefield calcium imaging recordings, are 
processed and analyzed analogously in Cobrawap to extract quantitative characterizations of slow wave activity 
as the basis for cross-domain comparisons.

Keywords: cerebral cortex, cortical oscillations, slow wave activity, data analysis, software tools, workflow, 
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INTRODUCTION/MOTIVATION

Workflows for the processing and analysis of electrophysiology data are often implemented as one or multiple scripts that 

read input datasets and produce result files [1]. To increase the reuse and rigour of such scripts, the code should rely on 

software libraries that provide the analysis methods operating on a data model suitable for the representation of neuronal 

data. Even at such a high level of standardisation, several challenges remain for the analyst. (i) Relevant parameters are often 

probed interactively, such that subsequent results depend on the details of this interactive process. Keeping track of the 

parameters used for a specific result becomes difficult. (ii) Results are often used in shared collaborative environments. All 

collaborators need to have detailed knowledge of the analysis process to understand and interpret the results. (iii) Finding 

specific results in a large repository of analysis results is difficult, as several parameters may be stored in a custom or non-

machine-readable fashion inside the result file. Overall, the exact analysis processes starting from the experimental dataset 

to the final results may not be clear when looking at a result file alone.

METHODS

Provenance information describes data manipulations and parameters throughout the analysis [2,3]. 

Comprehensive capture of provenance information during execution of analysis scripts will help to address those challenges. 

Available workflow management systems can capture high-level parts of the provenance, such as which scripts were 

executed, the corresponding execution environment, and their dependencies on input files and parameters. However, the 

details about the analyses carried out inside the executed script are missing and the results can only be understood by source 

code inspection or documentation. In this work, we aimed to capture such fine-grained provenance within Python scripts. To 

test our approach, we designed two use case scenarios that implement processing of electrophysiology data. In the first 

scenario, a multichannel electrophysiological dataset recorded in a behavioural task [4] is analysed by means of a Python 

script. The use case consists of typical
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analysis steps, such as data selection, multi-step processing of the data, aggregation of data across trials, and producing a 

plot. In the second scenario, we consider modules of a preprocessing pipeline for electrophysiological data based on 

snakemake [5] that performs specific transformations in the data to generate a final dataset for analysis. The codes of both 

use cases utilise the Elephant library [6] and the Neo data model [7] as an EBRAINS software basis to standardise data 

representations and analysis functions.

Using decorators, Alpaca captures the provenance of Python scripts including the data flow, used functions, object metadata and function parameters.

RESULTS AND DISCUSSION

We implemented the Alpaca (Automatic Lightweight Provenance Capture) toolbox to capture provenance requiring 

minimal user intervention when running Python analysis scripts [8]. Alpaca records the inputs, outputs, and parameters of 

the functions called within a script. We demonstrate how this information is structured according to the W3C PROV 

standard [9] and serialised as metadata files together with the results. We detail the extent to which Alpaca tracks the data 

flow during the program execution in the two use case scenarios. Properties and metadata provided by Elephant and Neo are 

retained in the captured provenance information. Based on these results, we discuss how the provenance information and its 

graphical representation address the initial challenges for preprocessing and analysis workflows by exposing the details of 

the result generation. This will help to share results according to the FAIR principles [10], improve research reproducibility 

and form the basis for intuitive provenance exploration via graphical interfaces.

Keywords: provenance, electrophysiology, workflows, data analysis, preprocessing, metadata, software, 

visualization, neuroscience, Python, Knowledgegraph
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Introduction: The transition to open science lays the foundation for exploring the wealth of data 
produced within neuroscience. Sharing research outputs in a systematic and standardised manner is 
crucial to repeat, replicate, and reuse scientific outputs. However, the wide variety of data types and 
formats produced by neuroscience research constitutes a major challenge. The EBRAINS Data and 
Knowledge Services enable researchers to discover, access, and interpret neuroscience data, 
computational models, and code, and share their own via the EBRAINS research infrastructure.
Here we present the curation service, where data curation scientists of diverse neuroscience 
backgrounds provide tailored support to researchers sharing their research outputs via EBRAINS. In 
what follows, we use the word “data” to include data, models, and code. The data curation services 
ensure that the data is organised in an understandable and consistent manner, that the data are 
annotated with sufficient metadata, and that the curated data are connected to an ecosystem of 
tools and services facilitating its reuse and analysis.

Methods/Results: Using the FAIR data guiding principles (Findability, Accessibility, Interoperability, 
Reusability)1 as a backbone, the EBRAINS Data & Knowledge Services split into three components: the 
neuroscience metadata framework, openMINDS 
(https://github.com/HumanBrainProject/openMINDS, RRID:SCR_023173), the flexible graph 
database Knowledge Graph, and the curation service. Through established workflows and 
documentation, the curation service ensures that data is annotated with relevant and sufficient 
metadata following the openMINDS framework. Curated data is stored as nodes on the Knowledge 
Graph, making it Findable and Accessible to the broader research community via our search engine 
(https://search.kg.ebrains.eu) or programmatically via an API. Alongside the annotated data, the 
Data Descriptor, a document describing data acquisition methods and data organisation, increases 
the Reusability of the data. Researchers are encouraged to use community standards for data 
organisation (e.g., BIDS, NWB) to increase the Interoperability of the shared data.

Discussion: Our mission is to ensure viable data sharing and data discovery. We collect, organise and 
combine multifaceted data to accelerate reproducible research. We aim to unify all neuroscience 
research by making it as openly available as possible, and by enabling analysis and comparison of 
brain data across modalities.

Keywords: neuroscience, open science, FAIR data, data sharing, data curation
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INTRODUCTION/MOTIVATION
As a world-leading research infrastructure facilitating the curation, archiving, and sharing of 
neuroscience data from all over the globe, EBRAINS processes huge amounts of brain data. Many of 
these are health data and potentially sensitive or special category data. To be socially acceptable, 
ethically responsible and legally compliant, this requires appropriate governance mechanisms[1]. 
EBRAINS is the first infrastructure to develop a responsible, and responsive, model of Data Governance 
and Ethics Compliance that align with the EU’s GDPR. These governance mechanisms are based on 
a decade of Responsible Research and Innovation research activities by academics and scientists in The 
Human Brain Project [2]. Our work has garnered a great deal of attention worldwide, and the models, 
policies and approaches to data governance and ethics compliance we have developed can be 
replicated in similar international infrastructures.

Meanwhile, researchers still struggle to deal with these complex issues; the question of how data can 
be ethically collected, stored, and shared is a not a solved one, and so EBRAINS has developed a model 
which makes the handling of these pivotal concepts simple and straightforward.

This poster will highlight the models for Data Governance and Ethics Compliance which we have 
developed and will inform researchers on the good practices that those innovative models 
encourage and support.

METHODS

Current EBRAINS practices, policies and procedures were developed by a multidisciplinary team of 
ethicists, lawyers, and scientists. They are the result of a great deal of academic inquiry, dialogue, 
and research in the fields of data ethics, neuroethics, research integrity, law and international policy, 
to name a few [3].

The content of this poster is derived from a decade of insights and experiences of those 
professionals over the course of the Human Brain Project.
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RESULTS AND DISCUSSION

EBRAINS has developed a data governance framework based upon three core pillars: People, Processes 
and Technology (PPT). This framework, developed by researchers in WP4, WP9 and the Data Governance 
Working Group, ensures that data governance issues are addressed at each stage of the data 
lifecycle[4] .

Within the PPT framework the People include all identified stakeholders within all the data 
processing pipelines in EBRAINS who are responsible for creating, applying, and maintaining data 
governance procedures. It also includes the identification of data subjects whose rights must always be 
upheld in a dialogical approach[5]. Most importantly for HBP/EBRAINS, there are established 
stakeholders, groups or committees to consider the interests of the data subjects. For instance, 
the Data Governance Working Group: This Includes representatives from all the service categories and 
Work Packages (WPs). The DGWG works closely with other bodies in the HBP, notably the Science and 
Infrastructure Board (SIB), the Directorate, the Data Protection Officer (DPO), the Scientific and 
Technical coordinators and other relevant bodies such as the Compliance, Data Governance, Data 
Protection and Data Management Task (T4.5), and the independent Ethics Advisory Board (EAB).

There are also Processes - referring to the diverse technical, legal, and ethical policies, 
procedures and practical processes set up to ensure responsible data governance. An example 
of the processes developed to handle data in EBRAINS is the Ethics Compliance Traffic Lights system 
developed to assess the compliance requirements for data progressing through the data curation 
pathway.

Finally, there is also Technology which includes all technologies developed and applied in EBRAINS 
workflows to ensure usability, FAIR and compliance to relevant laws and ethical principles.

This framework, which addresses every stage of the data lifecycle, allows EBRAINS to ensure that ethics 
and law are embedded in the design process, encompassing a “Responsibility-by- design” approach [6]. 
Implementation of this framework has highlighted the importance of taking a dialogical approach 
to the implementation of ethics compliance, data governance and data protection in such a large 
venture as The Human Brain Project and EBRAINS, where just as important as the application of laws 
and regulations is the establishment of a network of informed, supported and responsible 
researchers.
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INTRODUCTION/MOTIVATION

To stimulate the hoped-for ground-breaking science that will address societal “grand challenges,” science policy makers and 

research funding bodies increasingly stress the need to create wide interdisciplinary networks of researchers and 

durable research infrastructures. While interdisciplinary collaboration and research infrastructures are well explored 

topics in the social study of science and technology, we know little about whether and how research infrastructures foster 

and support interdisciplinary collaboration. The HBP is an unprecedented large-scale project involving more than 500 

scientists and engineers in more than 100 institutions across Europe. This presents unique challenges to the management of 

the collaborations necessary to achieve its scientific goals. As such, it is an experiment in large-scale collaborations and in 

the development of infrastructure to create, monitor, and measure those very collaborations. Therefore, we use the 

HBP as a case study to explore the relationships and dynamics between collaboration and infrastructure in large-scale 

science.

METHODS

Research was conducted continuously between 2014 and 2020 by the Foresight Lab at King’s College London as part of its 

work in the Ethics and Society sub-project of the HBP. More specifically, the research draws on participant 

observation of meetings between scientists, engineers, and project administrators; a total of eighteen interviews with 

infrastructure users and developers; and analysis of HBP and EC documents relating to community building, collaboration, 

and infrastructure development conducted in 2017-2019. We conducted a thematic analysis of our interview data and 

used inductive coding to identify themes.

RESULTS AND DISCUSSION

The overarching themes we identified in our data were a distinction between formal and informal infrastructure by the 

research participants, as well as their concerns about the visibility or invisibility of collaborations in the HBP. Our results 

suggest that the formal infrastructure built to facilitate and structure collaboration within large-scale interdisciplinary 

research projects can be in tension with the ways researchers collaborate. The interviews we conducted highlighted the 

coexistence of a formal infrastructure whose design has evolved from being user-led by internal HBP users to being primarily 

targeted at external users. The formal infrastructure has co-existed with
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an informal bricolage infrastructure that researchers and engineers in the HBP are using to collaborate— a parallel, informal, 

infrastructural patchwork that can go unnoticed by HBP management and EC project officers and reviewers. In some 

cases, the informal infrastructure is facilitating the development of the official HBP infrastructure and expanding 

the membership of the project beyond the existing communities that launched it. However, in some cases, the tools that 

have been put in place to underpin a formal infrastructure are actually perceived by scientists and engineers within and 

outside of the project as hindering collaboration. We identify a tension between the development of infrastructures of 

collaboration as a bureaucratic form of accountability and visibility, and the bureaucratic labour involved in enacting this 

visibility which in itself can fail to see the very collaborations it is meant to monitor and/or enforce. As the HBP formal 

infrastructure continues to develop and becomes EBRAINS, it will be important to continue to explore the (evolving) 

relationship between the formal and informal infrastructures of collaboration and what forms of knowledge will be made 

durable. In the future, it will be important for the EBRAINS research infrastructure to grow its research and innovation 

communities in a way that respects existing informal collaborations while also ensuring a more inclusive membership and 

governance.

Keywords: infrastructure, interdisciplinary, collaboration, ethics, society
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The FAIR Guiding Principles for scientific data management and stewardship in neuroscience is partnership between 

researchers, repositories, indexes/aggregators coordinated by community organizations. In this partnership, community 

organizations are responsible for developing the discipline specific standards and best practices the guide the data 

management practices of the researchers and serve as the standards for domain- specific data repositories. 

Indexers/aggregators serve as portals that integrate data and models from different repositories and make them 

discoverable through a centralized search interface. In an effort to make the research outputs of the global neuroscience 

community available through the EBRAINS RI, we developed KnowledgeSpace (KS), a global indexing service and 

encyclopaedia that links neuroscience research concepts to the data, models, and literature from FAIR-compliant data 

repositories that supports them. As a service, KS ingests metadata from 20 of the world’s leading neuroscience 

repositories to create a catalogue of publicly available datasets and the literature that supports the data. In addition, KS 

also ingests descriptions of neuroscience terms found in Wikipedia and displays them in the “KS encyclopaedia view” 

which merges Wikipedia with PubMed and the KS data catalogue. The KS data catalogue can be semantically queried in a 

multitude of ways: by repository, data type, region of interest, or disease. To our knowledge, KS is the only service that 

indexes datasets generated by the world’s large-scale brain projects (Human Brain Project, BRAIN Initiative, Brain/MINDS, 

and the Canadian Open Neuroscience Platform). Of special note, KS provides the BRAIN Initiative with a search interface 

that indexes BRAIN Initiative supported repositories, DANDI Archive and OpenNeuro—a service not provided by the BRAIN 

Initiative. In addition to indexing publicly available datasets

from the world’s leading neuroscience data repositories, KS also indexes abstracts published in PubMed and the 

educational materials published in the INCF TrainingSpace. In practical terms, this enables a user to query a region of 

interests and receive results displaying: a. publicly available datasets, b. the literature related to the region of interest in 

PubMed, c. educational resources related to the region of interest in TrainingSpace, and d. an “encyclopaedia view” of the 

region of interest which combines Wikipedia, PubMed, and the KS data catalogue. Programmatically, KS APIs that enable 

3rd party research infrastructures with the ability to leverage the various components of KS, mappings between data 

repositories, and all NINDS Common Data Elements. In closing, KS provides the EBRAINS research infrastructure with the 

3rd pillar of the FAIR partnership, an indexing- aggregating service, that serves as “proof of the international FAIRness” of 

the EBRAINS research infrastructure.

mailto:mathew@incf.org


Keywords: FAIR data, Data aggregator, Data indexer, Encyclopaedia, Data discovery portal, FAIR models

ACKNOWLEDGEMENTS

This project/research has received funding from the European Union’s Horizon 2020 Framework Programme for

Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

.



30. Data Movement to Facilitate Scientific 
Workflows in the Fenix Research Infrastructure

Shiting Long1*, Martin Lischewski1

1Forschungszentrum Jülich, Jülich Supercomputing Centre (JSC), Jülich, Germany

*s.long@fz-juelich.de

INTRODUCTION/MOTIVATION

Neuroscience communities in the Human Brain Project (HBP) often rely on e-infrastructure services to access, 

process and analyse data in a collaborative manner. As a result, a federated research e- infrastructure is 

proposed, namely Fenix, which is based on a consortium of 6 leading European supercomputing centres 

integrated into a common AAI [1].

In addition to workflows that utilize high-performance computing resources, there is an increasing number of 

workflows that extend beyond HPC and involve cloud resources to consume and generate data [2]. Hence, Fenix 

provides computing and storage services that address not only traditional HPC but also on-demand cloud 

technologies. This necessitates the use of efficient services to move data across various components. In this 

abstract, we focus on the Fenix data services, which enable 1) data movement between HPC and cloud 

environments, and 2) data transfer across different Fenix sites.

METHODS

The Fenix research infrastructure categorises its services into two domains: HPC environment and cloud 

environment. To address the challenge of providing both high I/O bandwidth access to the data stores in 

massively parallel HPC systems and federated access to the data stores in the cloud, Fenix introduces two 

corresponding storage types, namely Active Data Repository (ACD) to store short-term data and Archival Data 

Repository (ARD) to store long-term data. To further ease the workflows concerning the two environments, Fenix 

delivers data services including the Data Mover to perform intra-site ACD-to-ARD data movement and the Data 

Transfer Service to perform inter-site ARD-to-ARD data movement.

ACDs describe those POSIX file systems that are close to the compute resources. We consider access to ACDs to 

be local to a single site. ARDs follow the Openstack Swift object store protocol, which optimises durability, 

availability and concurrency. Unlike ACDs, we consider access to ARDs to be federated by Fenix AAI, meaning 

that users can be authenticated by either a Fenix partner site identity provider (IdP) or a community IdP (such as 

the HBP IdP).

The Data Mover is implemented as a software named Nodeum [3], which is developed by MT-C [4] with the goal 

of offering programmable, high-speed, scalable and secure data movement between ACDs and ARDs as shown 

in Figure 1. In addition to Command Line Interface (CLI), the Data Mover allows data movement via the SLURM 

workload manager. Thus, the service offers 1) automated stage-in of data from ARD to ACD prior to the execution 

of a batch job, and 2) automated stage-out of data from ACD to ARD following the execution of a batch job.
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Figure 1. Example Data Mover workflow at JSC.

The Data Transfer Service aims to enable the orchestration of data transfers across ARDs. For this purpose, the 

File Transfer Service 3 (FTS3) [5] developed by CERN was selected as the service. To realise the Fenix use cases, 

we added Openstack Swift support to the FTS3 stack so that ARDs can be used as storage endpoints in a data 

transfer job. Since FTS3 is extended with a web-oriented interface WebFTS, we also added Swift protocol support 

there so that the service can be easily reached with a browser aside from the CLI.

RESULTS AND DISCUSSION

The Data Mover service is available at JSC on the Jülich Data Access servers (JUDAC). Other sites are currently 

testing and evaluating the service. There is an FTS3 instance running at Barcelona Supercomputing Center (BSC) 

that functions as the Data Transfer Service (illustrated in Figure 2). We are also setting up a WebFTS server at BSC 

to provide an extensive web interface. These data services are undergoing real-world integration and we aim to 

enhance their capabilities to realise their full potential for the HBP community and beyond.



Figure 2. Deployment of the FTS3 service at BSC.
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INTRODUCTION/MOTIVATION

Measurement of brain activity with electroencephalography (EEG) can be useful in a broad range of contexts, including 

research, patient assessment, or brain computer interfaces. Traditionally, this has been done using wet electrodes. These 

systems are expensive, difficult to place and require a trained specialist to set them up. During the last decades, a lot of effort 

has been placed on developing mobile dry EEG devices with improved usability and reduced cost, while trying to preserve 

signal quality [1]. Conductive textiles are a promising alternative for creating garment-like EEG systems that could take on 

textile qualities such as being breathable and washable. The use of conductive textiles to develop the sensor layer of 

EEG systems constitutes a relevant step in the field of neurotechnology, that improves the manufacturing process 

and features like comfort, ergonomics, and cost. [2]. In this work, we present an EEG system whose electrodes (textrodes), 

transmission and cap support are fully implemented and assembled using elements and materials from textile industry 

(Garment-EEG). EEG systems encapsulated in garments have the potential to enable a neurotechnology that is naturally 

accepted by people in their daily lives. The relevance of this research for HBP is that it has the potential to collect massive 

amounts of EEG data in real-world conditions to expand the contexts of existing EEG databases.

METHODS

We designed an EEG sensor layer that only uses smart textiles to monitor the brain activity from the forehead (see Figure 1A). 

It includes 4 recording electrodes, plus reference and ground, and a connector at the back part, where the amplifier is 

attached. The amplifier samples the signals at 256 Hz and uses Bluetooth Low Energy to send the data to a laptop. For 

comparison, we designed a second headband with the same configuration, but using standard dry Ag/AgCl electrodes 

(Dry-EEG) and coaxial cables (see Figure 1B). We compared the signals measured with both systems in an experimental study with 

ten healthy participants. They performed the same tasks using both systems: (1) 3 minutes resting with eyes closed; (2) 3 

minutes resting with eyes open; (3) artifact induction, where different movements were executed to contaminate the EEG 

signals. The obtained signals were compared in terms of power spectral density, and statistical tests were used to compare 

the power in delta, theta, alpha, beta, and electrical noise (50 Hz) bands for each condition.
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Figure 1. Garment-EEG (A) and Dry-EEG (B) headbands.

RESULTS AND DISCUSSION

Figure 2 shows the spectral analysis of the EEG signals recorded with both headbands during eyes-closed resting state (Figure 

2A), eyes-open resting state (Figure 2B), and during the generation of artifacts (Figure 2C). In both resting state 

measurements, the EEG power in delta, theta, alpha and beta frequencies was not significantly different between the 

Garment-EEG and the Dry-EEG (Figure 2A-B; p>0.05 in all cases). In contrast, the power during the induction of artifacts 

(Figure 2C), as well as in the electrical-noise band for all conditions, was significantly higher for the Garment-EEG 

headband than for the Dry-EEG headband.

Figure 2. Average power spectral density comparison between the EEG activity measured with the 4 electrodes of the 

Garment-EEG and Dry-EEG during (A) eyes-closed, (B) eyes-open, and (C) artifact induction. n.s. = non- significant; ** 

p<0.01.

In summary, we have presented the first EEG system conceived as a garment, and compared its signals with respect to a 

state-of-the-art, metal-based dry EEG system. Our results show that, under a well-controlled scenario (i.e., in resting state), 

the signals achieved with the Garment-EEG are comparable to those of the Dry-EEG system; however, the textile system is 

more prone to artifacts in adverse recording conditions due to poorer contact impedances.

Keywords: electroencephalography (EEG), textile EEG, dry EEG, wearable EEG, smart textiles, neurotechnology, brain-

computer interface (BCI).
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INTRODUCTION/MOTIVATION

Epilepsy is one of the most common neurological disorders. This disorder is mainly characterized by a perdurable 

predisposition to generate epileptic seizures. In general, doctors use the EEG signal to diagnose patients with epilepsy. 

Moreover, a lot of work studied the feasibility of predicting seizures based on EEG signals. Indeed, there are some 

disadvantages that make it hard to use EEG signal for real use such as signal recording, number of electrodes used, finding 

the appropriate epileptogenic region, etc… In counter, other works showed that epileptic seizures affect not only brain but 

also anatomic nervous system, in particular heartbeat. In addition, ECG signal is easier to manipulate than the EEG and easier 

to record with an available sensor and mobile device that can record perfectly the ECG signal at any time. For that reason, this 

work aimed to study changes in the ECG signal in the pre-ictal period to explore the feasibility of creating an automatic 

epileptic seizure prediction approach

METHODS

The proposed approach starts with a pre-processing where notch, high pass, and low pass filters were used. The next step 

consists of detecting the R peaks and then computing the distance between each two consecutive R peaks (RRi). To study 

the changes on the ECG signal, we studied 1h of ECG signal before the seizures. Moreover, each input signal is divided into sub-

segments of 120 seconds with 10 seconds of overlap. For each sub-segment,
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two temporal and non-linear features were computed which are the NRRi and the non-linear feature Approximate entropy. 

Next, from each 5 min of feature vector computed, we compute the standard deviation (STD) with an overlapping of 1 

min.

In order to certify a crisis alert, the STD calculation results calculated from these two features were combined. In addition, 

the threshold algorithm was used on the STD results to ensure crisis prediction for each patient separately. In order 

to select the threshold value automatically, the following equation is used:

𝑇ℎ𝑟𝑒𝑠ℎ = 𝑀𝑒𝑎𝑛 + 𝛽 (1)

▪ Where 𝑀𝑒𝑎𝑛 presents the mean value of the input data segment.
▪ 𝛽 is a value computed from 𝑀𝑒𝑎𝑛 where the value of 𝛽 will be in the range of values [0 – 

𝑀𝑒𝑎𝑛], where the min value of 𝛽 will equal to 0 and the max will equal to the value of 
𝑀𝑒𝑎𝑛

▪ For selecting the 𝛽 value, a Grid-search algorithm will be used to test all the possible 
threshold values.

▪ Both pre-ictal and inter-ictal period was used to select the best threshold value.
▪ The 𝛽 value will be selected for each patient separately.

RESULTS AND DISCUSSION

To measure the performance of the proposed approach, three databases sienna scalp EEG [1], post-ictal [2] and a local 
database were used. The prediction performance of the proposed approach is listed in the table below.

Table 1. The performance of the automatic threshold approach using the three databases

Sensitivity Specificity Accuracy

The local Database 85% 81% 82%

Siena Scalp EEG Database 75% 85% 82%

Post-ictal Database 90% 83% 85%

The figure bellow presents an example of the automatic thresholding prediction of a patient from the Sienna scalp EEG 

database



Fig. 1 An example of applying the automatic threshold prediction approach on the acquisition PN06-2

Keywords Electrocardiogram, Epilepsy, Prediction, Epileptic Seizures, threshold, Heart rate variability analysis

ACKNOWLEDGEMENTS REFERENCES

[1] Detti, Paolo, “Siena Scalp EEG Database.” PhysioNet. doi: 10.13026/5D4A-J060.
[2] I. C. Al-Aweel et al., “Post-Ictal Heart Rate Oscillations in Partial Epilepsy: Data and Analysis.” physionet.org,

1998. doi: 10.13026/C2QC72.



2

33. Quantitative Susceptibility Mapping and 𝜒-
separation method: how MRI can help us 
understand COVID-19

Elena Grosso1*, Antonio Ricciardi2, Fulvia Palesi1, Claudia 
AM Gandini Wheeler-Kingshott2,1,3

1 Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy;
2 NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute 
of Neurology, London, United Kingdom.
3 Brain Connectivity Centre Research Unit, IRCCS Mondino Foundation, Pavia, Italy
* elena.grosso01@universitadipavia.it

INTRODUCTION
After almost three years since the start of the COVID-19 pandemic, people are aware of the possible 
neurological consequences of the SARS-COV-2 infection1. The underlying biological mechanisms of such 
consequences can be investigated with magnetic resonance imaging (MRI). Quantitative susceptibility 
mapping (QSM) is an established MRI technique that estimates the distribution of local magnetic 
susceptibility (𝜒) of tissue2, which is directly
related to its chemical composition. In the brain, iron and myelin3 are the two main sources
of magnetic susceptibility having opposite characteristics: iron is paramagnetic (positive 
susceptibility, 𝜒𝑝𝑜𝑠) and myelin is diamagnetic (negative susceptibility, 𝜒𝑛𝑒𝑔). Both have been 
suggested as biomarkers for neurological disorders4,5, however traditional QSM is unable to 
differentiate between the two. Therefore, new models6 have been developed to separate the 𝜒𝑝𝑜𝑠 
and 𝜒𝑛𝑒𝑔 contributions, generating the voxel-wise distributions of the two sources.
Here, one specific model7 has been used to evaluate local alterations of the total 𝜒 as well as of the 
iron and myelin components in a cohort of subjects previously affected by COVID-19.

METHODS
Subjects & Acquisition
Subjects were divided into four groups: 16 healthy controls (HC; 7 females; 35±12y), 11 subjects 
recovered from COVID-19 (COVID; 9 females; 28±10y), 8 subjects with persistent anosmia (COVID-P; 7 
females; 52±12y), 16 subjects recovered from anosmia (COVID-R; 7 females; 39±8y), 8 young subjects 
recovered from anosmia (COVID-Y; 4 females; 22±1y). MRI data were acquired with a 3T Philips 
Ingenia CX scanner with a very rich protocol8. The protocol included: 1) multi-echo 3D tilted sagittal 
spoiled gradient-echo (SPGR) (8 echoes, TE1/ΔTE=2.3/3.3ms, TR=28.5ms, flip angle=24°, 1x1x1mm3) 
for QSM and 𝑇∗ calculations; 2)
3D sagittal T1-weighted (3DT1) ultrafast gradient echo (TE=3.2ms, TR=6.9ms, flip angle=8°,
1x1x1mm3) for tissue segmentation.
Preprocessing & Metrics Analysis
For each subject, QSM and local field maps were reconstructed from the complex SPGR data with the 
Morphology Enabled Dipole Inversion (MEDI) toolbox. T2* was calculated from the magnitude of 
the SPGR data using the MyRelax toolbox9. Brain parcellation was performed on the 3DT1 volume 
using Geodesic Information Flows (GIF)10. Regions of interest (ROIs) of cortical grey matter (CGM), 
deep grey matter (DGM), white matter (WM) and brain steam (BS) were extracted. QSM maps and 
ROI masks were registered to SPGR space of each subject using NiftyReg.
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The mean values of QSM, 𝜒𝑝𝑜𝑠, 𝜒𝑛𝑒𝑔 and 𝜒𝑡𝑜𝑡 were calculated for all the ROIs. Linear regression 
models using one metric at a time as dependent variable, and age and gender as
covariates, were performed to assess differences between HC and COVID as a whole, between HC and 
each COVID subgroup and between COVID-P and recovered anosmia subjects (COVID-R+Y).

RESULTS AND DISCUSSION
All the significative results are reported in Figure2. In particular, they show that mean QSM is 
greater in COVID-P respect to COVID-R+Y in WM, while it is lower in the DGM and in the CGM. Also, 
mean QSM is lower in COVID-R respect to HC in WM and it is greater in COVID-Y respect to HC in CGM. 
𝜒𝑡𝑜𝑡 linear regression analysis gives the same results as the QSM
analysis between COVID-P and COVID-R+Y; it additionally showes greater values in COVID-P
respect to HC in WM and a lower value in COVID-R respect to HC in the CGM.
𝜒𝑝𝑜𝑠 and 𝜒𝑛𝑒𝑔 analysis give no significant results.
We can conclude that QSM and 𝜒-separation are confident in finding the same differences between 
groups in the same ROIs of these COVID subgroups. The 𝜒-separation method may require larger 
sample size groups to capture alterations in the content of iron and myelin in
the brain, as these may be subtle. Future work will include investigating other emerging
𝜒 -separation models or combining QSM with complementary MRI techniques to obtain more 
detailed information.
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FIGURES

Figure 1| Method pipeline. In the first row it is shown a table of the subjects we recruited for this 
study (HC = healthy controls, COVID = recovered from COVID-19, COVID-P = persistent anosmia, 
COVID-R = recovered from anosmia, COVID-Y = young subjects recovered from anosmia). In the 
second row are reported the biophysical meaningful maps we analysed: quantitative susceptibility 
mapping (QSM) and 𝜒-positive, 𝜒-negative and 𝜒-
total maps (𝜒𝑝𝑜𝑠, 𝜒𝑛𝑒𝑔, 𝜒𝑡𝑜𝑡) obtained with the 𝜒-separation method. In the last row all the
extracted and analyzed regions of interest (ROIs) have been reported.



Figure 2| Statistical Results. In the table on the first row are reported all the results of the linear 
regression betweeen groups. The second row represents boxplots of the analyzed metrics in every 
region of interest. In every boxplot all the groups are represented (HC = healthy controls, COVID = 
recovered from COVID-19, COVID-P = persistent anosmia, COVID-R
= recovered from anosmia, COVID-Y = young subjects recovered from anosmia). Significant results 
(p<0.05) between groups are marked with an asterisk, results with p<0.01 are marked with two 
asterisks.
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INTRODUCTION/MOTIVATION

In the field of computational neuroscience, brain simulations with the neuroinformatics platform The Virtual Brain (TVB; 

www.thevirtualbrain.org) have proven to be a powerful tool both for deepening our understanding of neuronal 

mechanisms [1], as well as improving our capability to diagnose [2] and treat patients [3]. The employed mathematical models 

allow for the computation of patient-specific, individualized brain models, aiming for clinical hypothesis testing in silico [4]. 

The mathematical framework incorporates various local dynamic models of neural behavior, each characterized by numerous 

parameters governing their dynamics. But while this complexity allows for a wide range of applications, the systematic 

comparison between results from different models remains challenging. One potential solution is offered by highly 

structured knowledge representations as available in knowledge bases and ontologies, going back to Tim Berner-Lee's 

vision of a semantic web [5]. We therefore suggest a novel ontology incorporating both the mathematical and the biological 

framework of TVB and aiming to serve as a central knowledge hub for brain modelling and simulation with TVB.

METHODS

We have developed The Virtual Brain Ontology (TVB-O): the first knowledge representation that formalizes the mathematical 

framework at the core of TVB by annotating it in a hierarchically structured manner. Additionally, we have integrated the 

Gene Ontology (GO, [6]), a biological knowledge graph, into TVB-O. This was achieved using a semi-automatic approach 

reducing the 1,117,589 biological processes from GO to 215 biochemical pathways and electrophysiological processes 

that have a potential surrogate in brain modelling. These 215 processes were clustered by their function and linked to 

the relevant large-scale brain network model (BNM) components of TVB, i.e., model parameters and variables. As an 

additional function for interoperability, we have implemented full compatibility with the standardized XML-based 

language Low Entropy Model Specification language (LEMS, [7]) for defining BNMs succinctly.
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RESULTS AND DISCUSSION

TVB-O is a central knowledge resource for brain modelling that provides standardization and information for over

370 parameters across 8 biological and 9 phenomenological models. The rich annotation of multimodal 

information in TVB-O ranges from synonyms, definitions, explanations and further resources over default values to biological 

surrogates of BNM components. This link between modelling parameters and biological processes is achieved by the 

annotation of 215 biological processes from GO. The relationship between entities is described by 43 newly defined 

properties, e.g., “is_coefficient_of”.

As an example, we identified the process “positive regulation of neuronal action potential“ from GO as 

electrophysiologically relevant and assigned it to the cluster “Excitation“. One of the model parameters annotated to the 

cluster “Excitation“ was the amplitude of the excitatory postsynaptic potential “A_JR“ from the Jansen-Rit model [8].

TVB-O is providing its information in a mathematically rigorous machine- and human-readable way. It therefore allows for 

new inferences of relationships between biological entities and BNM components, based on formal logics and 

computational semantics. It is also capable of the automated generation of executable code for brain simulations with TVB 

using LEMS. Furthermore, a key feature of TVB-O is to provide suggestions for candidate mechanisms based on a protein, 

process or pathology of interest.

TVB-O is providing a novel integrated knowledge resource with a growing number of annotated neural models for the general 

neuroscientific community, from scientists to clinicians, that paves the way for a better understanding of the neuronal 

mechanisms involved in specific pathologies and aims to improve standardization and reproducibility in 

computational neuroscience.

Keywords: brain modelling, biological pathways, ontology, The Virtual Brain, semantic web, knowledge graphs, gene 

ontology
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INTRODUCTION/MOTIVATION

Functional connectivity (FC) reflects the synchronization of neuronal activity among anatomically separated brain regions. 

The alteration of spontaneous and perturbed FC has been used to investigate the effects of the brain state on the 

functional cortical network, demonstrating how sensory responses observed in the neocortex are strongly influenced by 

changes in brain state[1]. These studies have been generally conducted via functional Magnetic Resonance Imaging 

(fMRI)[2], which is a measure of blood flow changes rather than neuronal activity, or by comparing awake state with just one 

anaesthetic condition[3]. Here we described the impact of four distinct brain states, generated with isoflurane 

anaesthesia, on large-scale spontaneous and perturbed FC in mice expressing fluorescent calcium indicator GCaMP6f in 

pyramidal neurons.

METHODS

We performed wide-field calcium imaging of the entire dorsal cortex of transgenic mice expressing GCaMP6f in excitatory 

neurons. Mice were anesthetized with isoflurane (3% for induction, 1–2% for maintenance) and placed in a stereotaxic 

apparatus (KOPF, model 1900). The skin and the periosteum were cleaned and removed. Bregma was signed with a black fine-

tip pen. A custom-made aluminium head-bar placed behind lambda and the exposed skull were sealed using transparent 

dental cement (Super Bond C&B – Sun Medical). After the post-surgical recovery period (3 days), wide-field imaging 

was performed through the intact skull using a custom-made microscope.
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The awake imaging records consisted by 50-60 minutes of imaging session in which both spontaneous (38 s-long, 5 

repetitions) and perturbed activity (24 s-long, 30 repetitions) were recorded. Mice were also anesthetised by isoflurane to 

investigate three brain states: DEEP (1.71 ± 0.08 %), MEDIUM (1.49 ± 0.06 % ) and LIGHT anaesthesia (1.32 ± 0.12 %). Deep and 

medium anaesthesia were recorded consecutively on the same imaging session per mouse, shifting from the higher 

isoflurane concentration to the lower. Stimulation was delivered to the left whiskers through a tubing system using an 

electrically gated pressure injector (Picospritzer III—Science Products). Whiskers were deflected ~1 cm in the rostro-caudal 

direction. A single stimulation trial consisted of 24 s designed as: 13 s rest, 1 s of stimulation with a blowing time of 60 ms, 

10 s rest.

RESULTS AND DISCUSSION

Based on the level of isoflurane concentration, we initially classified four brain sates: (i) wakefulness, (ii) light, (iii) medium 

and (iv) deep anaesthesia. Then, we characterized and compared the network architecture and properties of both 

spontaneous and perturbed FC in the four brain states.

Our preliminary results indicate that light anaesthesia caused the most significant changes in spontaneous FC at both the 

global and the regional level when compared not only to deeper levels of anaesthesia but also to wakefulness. 

Instead, FC after sensory stimulation exhibited different properties only in awake and light anaesthesia while 

medium and deep anaesthesia results were comparable. Interestingly, the PCI (Perturbation Complexity Index) analysis of 

the perturbed activity showed instead a drop of the response complexity for deeper anaesthesia levels. Consequently, we 

performed a region-specific single-trial peak analysis, which revealed that medium and deep anaesthesia were characterized 

by a primary stereotyped early response followed by a more time-distributed late response, the probability of which was 

affected by the brain state. In fact, there were two activation peaks in the single-trial response, and the probability of this 

secondary response was lower in deep than in medium anaesthesia.

Keywords: wide-field imaging, whisker stimulation, in vivo, isoflurane, anaesthesia, functional connectivity
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INTRODUCTION/MOTIVATION

In most scientific disciplines, researchers increasingly rely on data from large numbers of experiments, often containing 

extensive metadata describing the context of each experiment’s individual trials. However, it can be difficult or impossible 

for a scientist to obtain an overview of these vast quantities of information (e.g. [1]) and to identify sets of experiments 

based on criteria (e.g. to plan further analyses). Simple user interfaces to inspect metadata can help solve this problem, 

but scientists don’t always have the time or experience to create such software themselves.

Here we present a prototype of our in-development software Beaverdam (Build, Explore, And Visualize 

ExpeRimental DAtabases of Metadata), which helps researchers interactively explore collections of metadata and 

summarize subsets of experiments.

METHODS

Beaverdam combines metadata from multiple experiments into a database, then builds an user interface with forms 

showing options for selection criteria, graphs showing a high-level overview, and a table showing details of each experiment. 

Users can explore their experiments by interacting with the forms and graphs; visualizations update on the fly as selection 

criteria change.

We use the programming language Python to develop Beaverdam, and the database system MongoDB for creating 

and working with unstructured databases. Using unstructured databases enables multiple metadata files to be stored 

and accessed in a single database even if they don’t contain identical fields – this allows metadata from experiments 

which share a subset of parameters to be compared. Beaverdam currently uses Plotly Dash to build its user interface, 

which users interact with in a web browser.
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Because Beaverdam visualizes results in a web interface, it is suitable for use at multiple scales – individual researchers 

can build and access a database locally on their laptop, or a research group can maintain a joint database which members 

access remotely.

RESULTS AND DISCUSSION

While we envision Beaverdam to ultimately be useful for all research disciplines, we are currently testing i t on metadata 

from multi-electrode recordings from the brains of macaque monkeys performing delayed reaching tasks [2,3]. In this 

project, each individual recording is accompanied by metadata describing over 1,000 aspects of the experimental setup and 

procedure. This metadata is stored in odML format [4,5]. Each experiment is rigorously described, but the sheer amount 

of metadata is too complex to be used as-is. Beaverdam condenses the metadata to show only information chosen by the 

user.

In future, we plan to integrate support into Beaverdam for additional metadata standards that are commonly used, 

such as the BIDS metadata structure [6], the openMINDS metadata models [7], and triplestore databases. Not only will this 

make using Beaverdam easy for researchers using these frameworks for their own metadata, supporting the openMINDS 

models and additional backends (e.g. triplestores) would give scientists more ways to explore metadata from EBRAINS 

datasets and knowledge graphs.

By condensing large sets of metadata and making them easy to explore, we envision that Beaverdam will help scientists 

gain insights into their own work and discover related works of others.

Keywords: database, metadata, software, visualization, neuroscience, Python, MongoDB, EBRAINS, openMINDS, knowledge 

graph
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INTRODUCTION

The rapid growth in scientific data volume highlights the urgency and importance of data discoverability. 

To this end, openMINDS delivers a comprehensive metadata framework for neuroscience data which 

has been successfully implemented on the EBRAINS Knowledge Graph. However, the comprehensive 

nature of the models, with highly interlinked schemas and different levels of detail, also imply that there 

is a steep learning curve for anyone who wishes to apply the models to their data.

This project presents a MATLAB toolbox with user-friendly interfaces that facilitates the creation and 

viewing of openMINDS metadata, enabling researchers who already use MATLAB to integrate the 

metadata registration into their experimental workflows. By bringing the descriptive nature of 

openMINDS into the experimental setting, the toolbox can serve as a digital lab book that increase the 

FAIRness of datasets, and eventually make it easier to share data through services that supports 

openMINDS.

METHODS

The toolbox is based on the translation of openMINDS schemas into MATLAB class definitions. All the 

openMINDS schemas are therefore available as classes which the user can use to create metadata 

instances in the form of objects. The objects can be added to a metadata collection where objects are 

linked together in a graph structure. The user can create and explore instances directly on the command 

line or write scripts where instances are created based on experimental parameters.

There is also graphical user interface consisting of a multi-page application where the user can choose to 

visualize the metadata collection in a tabular- or a graph-based view. Menus provide access to all the 

openMINDS schemas for easy creation of new instances. If a user chooses to create a new instance of a 

schema, an input form appears where the user can enter information for all the fields defined by that 

schema. Instances can later be edited either from the input form, or from the table view.
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Lastly the metadata collection can at any point be converted to the JSON-LD format which is the current 

requirement when sharing metadata in a graph database like the EBRAINS Knowledge Graph.

RESULTS AND DISCUSSION

MATLAB is a programming and computational platform which is widely used by neuroscientists to 

process and analyze data, and the presented toolbox adds the openMINDS framework into the arsenal 

of open-source neuroscience toolkits. The object-oriented nature of the toolbox provides advantages 

such as modular and functional access to all the model schemas, built-in validation, in-place 

documentation, and ease of maintenance through the ability to regenerate class definitions from 

openMINDS source code.

The toolbox provides a plug-and-play like entry point to openMINDS metadata, and researchers with no 

prior knowledge can start using the metadata models without diving into the technical complexities of 

openMINDS schemas. By letting researchers easily use openMINDS models in their experiments and data 

workflows, this toolbox may serve as a digital lab book that help researchers better organize their data 

and metadata and thereby also increase the FAIRness and discoverability of their datasets.

For users that do not have a MATLAB license, the toolbox can be compiled into a standalone executable 

application (scripting not available) or run through MATLAB Online, a cloud-based computing platform 

which provides 20 hours of free use per month.

In summary, the openMINDS MATLAB toolbox provides easy access to the full set of openMINDS 

metadata models, can serve as a digital lab book, provide extra organization and structure to a dataset, 

and ultimately, facilitate and accelerate the submission process when sharing data to a service which 

supports openMINDS, like the EBRAINS Knowledge Graph.
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INTRODUCTION/MOTIVATION

Dendritic spines are neural protrusions implied in synaptic function [1]-[2], whose morphology and topology result altered in 

neuropathies such as Alzheimer and autism spectrum [3]-[4]. However, the detection of spine necks, i.e., the thin 

connections of the head of the spine to the dendrite shaft, is challenged by optical resolution limits [5]. As a result, spines 

appear disconnected from the dendrite body. In this context, gold-standard manual segmentation is outstandingly 

time consuming, motivating the need for automatic solutions. Nonetheless, available neck-tracing algorithms either 

require large databases to train deep neural networks [6] or fail in detecting spine necks using global metrics of image 

intensity, since spine necks are characterized by lower signal- to-noise ratio [7]. This sensitivity can be attenuated by relying 

on the eigenvalue analysis of the Hessian matrix, already adopted for detecting tubular structures [8]. In this scenario, we 

present a new neck tracing method for reconnecting spines with dendrites. We embed it in the SENPAI framework, which 

employs Hessian topological information, morphological reconstruction and watershed transform to segment and 

parcellate neuronal trees and spines [9]. Our neck tracing similarly exploits local Hessian eigenvalue analysis to define 

iterative steps along the trace. The relevance of the trace initialization step is explored, comparing different approaches.

METHODS

A 3D stack of images of murine Purkinje cells acquired using a STED microscope equipped with 93X objective was processed to 

identify 5 dendritic portions using SENPAI (SENPAI segmentation, SS). The same portions were also segmented manually (MS) 

using ManSegTool [10]

The neck tracing algorithm works in two phases (Fig. 1):

- The initialization defines the first voxel of the trace among those composing the outer border (OB) of the 

disconnected spine. We tested 3 criteria: C1) the voxel in OB closest to the dendrite; C2) the maximum intensity voxel within 

OB; C3) the voxel in OB intersected by the principal axis of the spine, placed on the side of OB closest to the dendrite.
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- The path-finding consists of a one-voxel step procedure starting from the voxel v1 identified in Phase I. Eigenvalues 

of the Hessian matrix encode the information on second-order intensity variability. Within a tubular structure, the direction 

parallel to the main axis is associated with the smallest eigenvalue (Fig. 1). Starting from v1 (green in Fig. 1), voxel v2 is 

chosen in its 26-neighborhood as the one being intersected by the eigenvector associated to the smallest eigenvalue (in 

absolute value; golden arrow in Fig. 1). The procedure is iterated on each vi, to define vi+1, until the trace meets the 

dendrite.

A preliminary validation of this approach is performed on spines that appear detached from the dendrite branch after SS. 

We compare the results achieved with the three initialization strategies defining dMS the average Euclidean distance 

from the edge of the MS across the voxels of the considered neck.

RESULTS AND DISCUSSION

In fig. 2A 3D reconstructions of 3 dendrite segments along with the spines are shown. SS and MS segmentations are shown 

in different colors. The majority of the spines were connected with the proper section of the dendrite. Fig. 2B shows the 

quantitative evaluation for the 3 initialization criteria. Regardless of initialization, our approach averagely reduces by one 

third the number of spines left disconnected, with approximately all necks showing dMS<3. C2 is the criterion providing the 

best results, with dMS<3 for the 97% of necks and dMS≤1 for the 41.2% of them. Being embedded in the SENPAI algorithm, the 

Hessian-based neck tracing enriches an automatic neuron- reconstruction suite that fulfils the need for the characterization 

of arborization complexity and spine topology and morphology. Future developments should focus on providing a less 

local definition of maximum intensity.

Keywords: 3D STED, automatic segmentation, dendritic spines, neck tracing.
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Fig. 1 Schematization of the neck tracing approach. SS is marked in red, OB in yellow. Phase I) selection of the first voxel v1 in 
the trace among those in OB, with the three tested criteria. Phase II) thanks to the properties of the Hessian matrix eigenvalues 
within tubular structures, the neck can be traced by 1) performing the eigenvalue analysis at voxel vi; 2) defining vi+1 as the 
neighboring voxel intersected by the smallest eigenvector. Validation example) (simplified in a 2D case): necks (black) 
connecting disconnected clusters of OS (red) are compared against MS (white with green borders) in terms of average Euclidian 
distances. Distance values in cells are rounded to the highest integer.



Fig. 2 . A. Three examples of necks reconstructed by the algorithm (in black) overlaying SS (red) and MS (gray).
B. Evaluation of the three initialization approaches of phase I in terms of average distance from MS
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INTRODUCTION
SARS-CoV-2 has been associated with neurological diseases, particularly vascular disorders and 
altered mental status1,2, and a link between neurological symptoms and the virus induced cytokine 
storm has been shown3,4. People who experienced relatively mild COVID-19 also report persistent 
symptoms e.g., fatigue, brain fog, anosmia and autonomic dysfunction such as orthostatic 
hypotension and breathing pattern disorder. These persistent symptoms in otherwise healthy 
subjects are associated with what has now been defined as “long COVID syndrome”.

The evolving landscape of COVID-19 neurological manifestations requires detailed population-level 
studies in order to understand the extent of COVID-19 on the brain. Here we report results from a 
multi-modal quantitative MRI protocol assessing brain alterations in people who have a history of 
(long) COVID, but were not hospitalised.
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METHODS
62 subjects have been recruited between June 2020 and March 2021, of which:

● 18 healthy controls (HC, 9M, 39±11y);
● 8 with persistent anosmia (COVID-P, 1M, 52±12y);
● 20 with recovered anosmia: 10 age-matched with the COVID-PA group (COVID-R, 1M, 

51±9y), and 10 younger (yCOVID-R, 4M, 28±2y)
● 16 with no long COVID symptoms (COVID, 3M, 38±9y).

A Philips Ingenia CX 3T was used with a 32-channel head coil. The 1h15” MRI protocol included:

● FLAIR (1×1×1mm3; TE/TR=266ms/4.8s, TI=1.65s, FA=40°; 3’26”) for lesion
segmentation/filling5.

● 3DT1 (1×1×1mm3; TE/TR=3.1/6.9ms, FA=8°; 1’55”) for tissue segmentation6, producing 
masks of white matter (WM), cortical/deep grey matter (cGM/dGM) and brain stem (BS).

● fMRI (3×3×3mm3; TE/TR=25ms/4s, FA=90°, scans=100; 6’47”);
● pCASL (3×3×3mm3; TE/TR=12.1/4266ms, FA=90°, 360 scans; 8’) to measure cerebral 

blood flow (CBF);
● DWI (2×2×2mm3; TE/TR=96/6287ms, FA=90°, b-values={0, 1000, 2800, 2000},

directions={4, 20, 36, 20}; 9’41”); b0 with inverse phase encoding was also acquired. DTI, DKI 
and NODDI7 were performed on the DWI, obtaining maps of mean diffusivity (MD), 
fractional anisotropy (FA), mean kurtosis (MK), orientation dispersion index (ODI), neurite 
density index (NDI) and isotropic component volume fraction (Viso).

● IR (2×2×2mm3; TE/TR=59ms/15s, TI/dTI=[50-1910]/120ms, 12 TIs, FA=90°; 4’28”)
for T1 mapping8.

● qMT (2×2×2mm3; TE/TR=96/6287ms, FA=90°, MT-offset={96(x2), 13.7(x5),
3(x5)}MHz, MT-FAs={100(x2), 890(x5), 593(x5)}°; 4’57”) for bound-pool fraction (BPF) and 
quantitative T2 of the bound component (T2b) mapping8.

● B1-DAM (2×2×2mm3; TE/TR=59ms/15s, FA=120/60°; 1’) and B1-AFI (4×4×4mm3;
TE=2.2ms, TR=30/180ms, FA=60°; 1’57”) for B1 mapping via dual angle method9

and actual flip angle method10;
● SPGR-multiTE (1×1×1mm3; TE/dTE=[2.3-25.4]/3.3ms, 8 TEs, TR=29ms, FA=24°; 4’6”) and 

SPGR (1×1×1mm3; TE/TR=2.3/29ms, FA=4°; 4’6”), for T2* and
macromolecular tissue volume (MTV) mapping10, and quantitative susceptibility mapping 
(QSM).

● MRS (20×20×20mm3; TE/TR=35ms/2s, FA=90°; 4’52”) for quantification of 
metabolite concentration.

DWI, IR, qMT and B1-DAM scans underwent unified pre-processing10 involving noise, susceptibility 
distortion, and eddy current correction. B1-DAM and B1-AFI were used for B1 correction on qMT and 
SPGR, respectively. Approximated T2 maps were calculated from exponential fitting on T2-weighted 
signal from IR fitting (short TE) and b0 (long TE).

Exploratory statistical assessment of differences between groups was performed via linear 
regression, uncorrected for multiple comparisons, with age and gender as covariates.



RESULTS AND DISCUSSION
An overview of the extracted maps is shown in Figure 1. Statistically significant differences in regional 
metrics between groups are reported in Figure 2.

Results indicate the presence of neurological alterations in people previously infected by the SARS-
COV-2 virus with respect to HC. These changes were particularly prominent in people with persistent 
anosmia, including biomarkers of inflammation, iron and myelin alterations.
The possibility of iron overload and demyelination should therefore be further explored. This protocol 
is now being run as part of the MODEL-COV study on long COVID.

Keywords: COVID-19, anosmia, multimodal, MRI, susceptibility, spectroscopy, functional, 
diffusion, myelin, iron.
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Figures

Figure 1. Overview of all the quantitative maps extracted from the multi-modal MRI protocol.
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Figure 2. Summary of the significant differences between groups. Red indicates higher scores in the 
first group, blue indicates higher scores in the second group. FA in the cortex was not considered 
because not physiologically meaningful. GMF: grey matter volume fraction from tissue 
segmentation; tNAA and tCr: total N-acetylaspartate and creatine from MRS.
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INTRODUCTION/MOTIVATION

Sensory systems influence one another via cortical feedback and top-down pathways, even at early processing 
stages. Feedback pathways carry predictions of sensory information based on our internal models learned from 
prior sensory experiences. Unimodal visual input leads to meaningful sensory representations in the primary 
somatosensory cortex (S1) in humans (Smith & Goodale, 2013). Predictive processing theories suggest that 
sensory representations in early sensory cortices following unimodal sensory stimulation are driven by previously 
formed associative links between the different sensory properties of the stimuli e.g. the visual and haptic 
experiences associated with a phone. Although the literature indicates the existence of unique visual signatures 
in S1 due to learned sensory associations (Zhou & Fuster, 2000; Smith & Goodale, 2013), it is unknown if the effects 
observed in S1 are directly due to prior multi-sensory experience. Here, we investigated how learning through 
visual- haptic interactions with novel objects influences subsequent neural representations in S1 during 
unimodal visual stimulation.

METHODS

We divided participants into two groups, either with or without visual-haptic experience. Only the visual-
haptic experience group explored two unfamiliar 3D printed objects (“smoothie” and “cubie”) visually and 
haptically, focusing on the object’s shape and tactile properties prior to the fMRI experiment. During 
scanning, images of 4 objects were shown: a hairbrush, mug, “smoothie”, “cubie”, fig 1). We conducted 3T MRI 
scanning (N= 10, block-design EPI sequence: 19 slices, TR=1s, TE=20ms, 2x2x2mm) at the CCNi (Glasgow, Siemens 
Tim Trio), and 7T fMRI scanning at ICE (N = 5, Glasgow, Siemens Magnetom Terra). In 7T MRI, we recorded an 
anatomical scan (MP2RAGE T1-weighted), a finger tapping localiser scan to identity the cortical representation 
of each finger in S1 (330 volumes) and 3 functional runs of the main experiment (252 volumes, T2*-weighted 
gradient echo EPI, with a multiband factor of 2, an echo time (TE) of 26ms, 54 slices with a matrix size of 186 by 
186, isotropic resolution 0.8mm, interslice time of 37ms, 2000ms repetition time (TR), and a flip angle of 70 
degrees). For functional scans, data were recorded within a slab positioned over the primary and secondary 
somatosensory cortices, and the motor cortex. During the main functional runs, subjects viewed images of the 
four objects, presented for 400ms on/off, in a pseudorandom order. Subjects were required to maintain 
central fixation and passively view the images.



RESULTS AND DISCUSSION

We investigated whether prior visual-haptic experience with novel objects induced cross-modal contextual effects in S1 even 
during unimodal visual stimulation. As such, we hypothesised that we would be able to discriminate neuronal 
representations to unfamiliar objects in response to images of those objects, more so in the participant group with visual-
haptic experience. In our 3T data, we used a linear mixed-effects analysis to test the main effects of group type (visual haptic-
experience or no visual-haptic experience) and object type (between-category or within-category object comparison). 
We found preliminary evidence that discriminating between the brain responses was slightly better in the visual-
haptic experience group than in the group without visual-haptic experience. Preliminary 7T analysis revealed no 
content-specific response to visual stimuli in S1 by using a univariate General Linear Model approach, and we are now 
testing for laminar-specific contextual modulations. We hypothesize that contextual effects might be limited to superficial 
layers of S1, in line with evidence in mice showing that perirhinal input to layer 1 of S1 modulates learning (Doron et al., 
2020).

Keywords: fMRI, cortical layers, somatosensory cortex, cortical feedback processing, internal models, learning
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INTRODUCTION

openMINDS (open Metadata Initiative for Neuroscience Data Structures) [1] is a metadata framework for graph database 

systems, composed of linked metadata models, serviceable metadata instances libraries, and supportive tooling. The 

openMINDS metadata models support a wide range of research products, from experimental/simulated data to 

computational models and brain atlases, with different levels of granularity (basic, advanced, and in-depth) fostering data 

findability, accessibility, interoperability and reusability (FAIR) [2]. Here we will focus on electrophysiology data and present 

the "ephys" metadata model extension, which provides schemas for in-depth descriptions of such data. Additionally, the 

"specimenPrep", "chemicals", and "stimulation" metadata models are introduced, which are closely linked to the "ephys" 

extension but provide schemas for in-depth descriptions of techniques used in other research domains.

METHODS

All schemas in the openMINDS framework, including the "ephys", "specimenPrep", "chemicals", and "stimulation" extensions, 

are implemented in a lightweight, JSON-based syntax which is automatically transformed to common schema formats, such 

as JSON-Schema [3]. The modular set of metadata schemas of each extension was carefully integrated to fit with the other 

openMINDS metadata models covering different aspects of neuroscience data structures. As an ongoing effort, we 

identify electrophysiology relevant terminologies needed by the whole community and provide respective libraries of 

well-defined terms as a collection of metadata instances formatted as JSON-LD files [4]. If possible, these terms are matched 

to existing ontological terms of the InterLex project [5].

mailto:peyman.najafi@cnrs.fr
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All openMINDS efforts are open-source, accepting requests and contributions from the whole scientific 

community [6].

RESULTS AND DISCUSSION

The openMINDS “ephys” extension offers a metadata model to organize and capture information about 

electrophysiology experiments. The experiments may include patch clamp, intracellular, and extracellular 

recordings.

The openMINDS “specimenPrep” extension offers a metadata model to organize and capture information about specimen 

preparations. It is capable of capturing information about all three study design modalities: in vivo, ex vivo, and in vitro. It is 

interlinked with the openMINDS “ephys” extension to capture metadata information about the preparation of the 

specimens for electrophysiology experiments, including information about the method of preparation and the conditions 

under which the preparation took place.

The openMINDS “chemicals” extension offers a metadata model to organise and capture information about chemical 

compounds and mixtures. It is interlinked with the openMINDS “ephys” extension to define and describe the use of chemical 

compounds and mixtures in electrophysiology experiments.

The openMINDS “stimulation” extension offers a metadata model to organize and capture information about any 

stimulation procedure and used stimuli. It covers electrical stimulations as well as sensory and photon 

stimulations. It is interlinked with the openMINDS “ephys” extension to provide information about the stimulation used 

during the electrophysiology experiments and how it affects the recorded data. In 2019, openMINDS was adopted by 

EBRAINS [7], a European neuroscience research infrastructure. It is currently in the process of being adopted by Brain/MINDS 

[8], a Japanese national brain research project. Within EBRAINS, the integration of the new extensions now facilitates the 

interoperability between the EBRAINS Knowledge Graph [9] and other services. openMINDS is a mature, open-source 

metadata framework for graph database systems. In conjunction, the new openMINDS extensions “ephys”, “specimenPrep”, 

“chemicals” and “stimulation” offer a comprehensive metadata model for organizing and capturing information about 

electrophysiology experiments, specimen preparations, chemical compounds and mixtures, and stimulation procedures 

and stimuli used.

Keywords: electrophysiology, FAIR, graph database, metadata model, ontology
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INTRODUCTION/MOTIVATION

The human brain is an intricate network coordinating a sophisticated balance of excitatory & inhibitory activity between 

brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output 

relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using 

connectomics, a computational framework was recently introduced [1] and proposed a novel hybrid resting-state 

structural connectome (rsSC). One can replicate the time evolution of recordings from brain activity by employing 

mathematical models [2]. By choosing adequate model parameters, it is feasible to build customised virtual brain 

activity for individual subjects [3]. A major limitation when using traditional structural connectomes (SCs) to inform 

the connectivity properties in models, such as the Kuramoto model [4], is that the resulting simulated signals do not 

produce negative correlations similar to the empirical ones [5]. However, this is not the case in time series obtained 

by empirical neuroimaging data where both positive and negative correlations coexist. We here show [6] that by using rsSC 

such dynamical systems are able to produce simulated signals with both positive and negative correlations following the 

trends of the empirical ones.

METHODS

Structural and functional connectivity for 38 cognitively normal APOE ε4 allele carriers aged 40–60 are compared with 38 age 

and sex-matched (16 male/22 female) non-carriers (control/non-carriers). Imaging included T1- weighted MRI, resting 

state fMRI and diffusion weighted MRI (more details in [7]). Freesurfer cortical parcellation and sub-cortical segmentation 

was performed to derive 80 ROIs registered on the Desikan atlas [8]. We use a

novel approach introduced in [1] to produce rsSC connectomes which has already been used in several studies [9] which 

considers both structural connectivity and functional time series to form a signed coupling interaction network or signed 

rsSC to describe neural excitation and inhibition. Fig 1 shows a sample of the empirical SC and
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rsSC. We employ the Kuramoto model [4,5] and The Virtual Brain [10] to simulate the network's dynamics and produce 

simulated BOLD time series. Two cases of connectivity matrices were compared: (i) in the first one the

𝑐𝑖𝑗 values are defined by simply counting the number of streamlines connecting 2 regions; and (ii) in the second

one the 𝑐𝑖𝑗 values are assigned by the corresponding entries of the hybrid rsSC connectomes.

RESULTS AND DISCUSSION

Fig. 2 shows the superiority of hybrid rsSC over standard SC matrices in generating simulated BOLD time series with the 

Kuramoto model which better approximate the empirical ones. The upper row refers to simulations performed using 

the respective subject's standard SC matrix to define the coupling weights. Fig. 2A shows the parameter sweep exploration 

for the global coupling strength and delay parameters (𝐾, τ) when measuring for
correlation coefficient between eFC and sFC (CC𝐹𝐶 = corr(sFC, eFC). The 5 white circles on the red regions

indicate the highest correlations found. Fig. 2B depicts the eFC calculated from the empirical BOLD signal while Fig. 2C the 

sFC matrix with the larger CCFC. We can observe that sFC did not capture adequately the negative correlations. In Figs. 2D, 

we use the respective subject's hybrid rsSC matrix. Note the significant improvement in

the maximum value of the CCFC ≈ 0.86 compared to the one found when using the standard SC matrix (CCFC ≈ 0.33). Also 
note the better agreement between the two FC matrices (empirical (D) and simulated (E)) and how better the sFC captures 
both positive and negative correlations. This novel brain connectome rsSC combines

characteristics of both structural and functional information and allowed us to optimize model parameters and tune our 

model to produce simulated functional connectivity (FC) most similar to actual observed FC [6].

Keywords: Whole brain dynamics, Resting-state brain dynamics, neuroimaging data, functional connectivity, resting-

state informed structural connectome, Alzheimer’s disease
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Figure 1. Empirical connectivity matrices example (non-carrier subject). (A) Weights of SC matrix. (B) Hybrid rsSC matrix. (C) 
Tract length (mm) matrix L based on the euclidean distance of the nodes on the Desikan atlas (same for all simulations and 
subjects).



Figure 2. Parameter Sweep Exploration for eFC vs. sFC example. Upper row (using the respective subject's standard SC matrix to 
define the weights). Lower row (using the respective subject's hybrid rsSC matrix to define the weights).



43. Multiscale Modelling of the Cerebellum: structure-
dynamics-function

Claudia Casellato1, Alessio Marta1, Robin De Schepper1, Dimitri Rodarie1,2, Dianela Osorio1, 
Marialaura De Grazia1, Alice Geminiani1, Stefano Masoli1, Egidio D’Angelo1,3

1 Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
2 Enrico Fermi Study and Research Center, University of Rome, Italy
3 Brain Connectivity Center IRCCS Mondino Foundation, Pavia, Italy

Keywords: multiscale brain modelling, cerebellum, mouse, human, atlas-based mapping, 
pathological alterations, signal propagation, sensorimotor tasks, whole-brain integration

Introduction

The cerebellar network is renowned for its regular architecture that has inspired foundational 
computational theories. However, the relationship between circuit structure, function and 
dynamics remains elusive1. To tackle the issue, we developed an articulate pipeline: i) reconstruct 
and simulate the mouse cerebellar cortex, using morphologically realistic multi-compartmental 
neuron models2,
ii) introduce pathology-specific neural dysfunctions and predict the propagation of these alterations,
ii) build an equivalent spiking network with point-neurons and, after introducing plasticity rules, 
simulate it in long-lasting learning sensorimotor tasks3, iv) embed the cerebellar circuit in The Virtual 
Brain (TVB) and predict its impact on whole-brain dynamics. The same pipeline is applied for the 
human cerebellum.

Methods

The computational framework is the Brain Scaffold Builder4, flexibly designed to be applied for 
different species (e.g., rodent, human) and pathological states. The interfaces with several 
simulators (NEURON, NEST, Arbor) allow investigation of the same brain region at different 
resolutions. The direct interface with atlases allows to reconstruct full-scale cerebellar lobules with 
region-specificities (e.g., voxel-based density and cell composition data).

Some brain disorders are under investigations, e.g., autism, where an hyperexcitability of the 
cerebellar granule cells disrupts signal transfer in mice; the granule cell model was manipulated (ionic 
and synaptic properties) to reproduce such electrophysiological patterns, and then tested in the 
cerebellar microcircuit.

Furthermore, the cerebellar microcircuit in spiking version was connected with deep cerebellar 
nuclei and inferior olive, at a mesoscale level (microcomplex). Long-term plasticity rules were 
embedded at multiple connection sites. Eye-blink classical conditioning (EBCC) was simulated, in 
order to match behavioral recordings in mice, also bearing synapse-specific alterations.

Finally, the spiking cerebellar microcomplex model was connected in a mouse TVB framework, 
simulating a free whisking task. The model parameters and the spike-analog interfaces were tuned 



on experimental datasets (resting-state fMRI, baseline discharges…).

Results and discussion

From the mouse cerebellar cortex simulations, the emerging spatio-temporal dynamics provided 
functional model validation against recordings in vivo, beyond constructive validity based on internal 
connectivity and single neuron responses (Fig 1A). Neural correlates of behavior were explored by 
tuning the synapse strengths (Fig. 1B). The “pathological” simulations allowed to predict the impact 
of detailed lesions at network level.

The EBCC simulations predicted the interplay of different forms of plasticity in the cerebellar 
cortex, shedding light on the neural activities underlying learning in healthy and knock-out behaving 
mice (Fig. 1C).

The co-simulations in the TVB highlighted the cerebellar role as a key integrator between primary 
motor (M1) and sensory (S1) cortices during sensorimotor integration tasks: the M1-S1 spectral 
coherence showed an increase in gamma-band driven by the cerebellar activity (Fig. 1D).

Starting from the mouse cerebellar cortex reconstruction, the human network parameters were 
tailored on the available information, e.g., volume and layer thickness, cell morphologies 
(experimental images or geometrical shapes of the dendritic tree and axonal span), cell and synapse 
densities. Therefore, the generated connectome unifies a collection of scattered experimental data 
into a coherent construct and provides a new model-based ground-truth about human cerebellar 
organization (Fig. 2).

This pipeline connects multiscale elements, from intracellular mechanisms to behavior 
generation, considering the cerebellar detailed local connectome and the extracerebellar one. It is 
a powerful workflow to explore and predict mechanisms of pathologies and of possible treatments 
such as neuromodulation.
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Figures

Figure 1) A) Reconstruction and simulation of a mouse cerebellar cortex volume. Multicompartment morphology-based 
neuron models are embedded. The Brain Scaffold Builder (BSB) is used, interfacing it with NEURON simulator. A whisker 
air-puff stimulus (a burst) is delivered to 4 adjacent mossy fibers. Propagation goes along a vertical neuronal column 
(granule cells – red; Golgi cell – blue; Purkinje cell – green; stellate cell- yellow; basket cell – orange). B) The microcircuit 
model emulates an EBCC paradigm, in which a conditioned stimulus (tone) is delivered to the mossy fibers. The 
simulations reproduce the final state (“post-learning”) by exploring multiple levels of parallel fibers – Purkinje cells (pf-
PC) long-term depression (LTD). C) Microcomplex model in EBCC trials. The synaptic connections undergoing long-term 
plasticity are as dashed arrows. CS = conditioned stimulus, US = unconditioned stimulus; CR = conditioned response 
(eyeblink anticipating the US onset). D) Co-simulations with the spiking cerebellar network (in NEST simulator) in the TVB, 
focusing on the sensorimotor integration.



Figure 2) Reconstruction of the human cerebellar microcircuit. A) morphologies when available, and point clouds for 
stellate and basket cells, B) excitatory synapses (yellow dots) from parallel fibers on apical dendrites of a Golgi cell (voxel 
intersection strategy between 2 morphologies), C) inhibitory synapses (yellow dots) from stellate cells on a Purkinje cell 
(intersection strategy from a point cloud to a morphology)
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Introduction
We aim to reconstruct and simulate atlas-mapped cerebellar regions of the mouse, capturing the 

relationship between structure, dynamics, and function. Numerous experimental and clinical evidence in both 
humans and rodents show that lobule VI plays a relevant role in many functions including motor, cognitive, 
emotional, and social tasks1–3. Lobule VI is made up of a vermis part (declive) and a hemispheric part (simple lobule). 
We present here a pipeline to reconstruct the declive of the mouse, based on the Blue Brain Cell Atlas model4 and 
the Brain Scaffold Builder (BSB) tool5. With this pipeline, we were able to estimate for the first time the specific 
densities of each cell type, including granule, golgi, unipolar brush, lugaro, globular, Purkinje, candelabrum, basket, 
and stellate cells. In the BSB we placed, oriented, and connected the neurons. The output of this pipeline is a circuit 
that can be simulated and validated against functional experimental findings.

Methods
We build here a 3D representation of the mouse declive region, embedded into an anatomically realistic whole 

mouse brain structure (Figure 1). We based our model on the Blue Brain Cell Atlas pipeline4, which we extended with 
the Purkinje layer at the boundary between granular and molecular layers. We also added Unipolar brush cells 
and lugaro cells based on regional densities from Sekerková et al.6 and Dieudonné and Dumoulin7, 
respectively. Moreover, we proposed a new strategy to place Purkinje, candelabrum and globular cells based 
on linear density from Osorno et al.8 (Figure 1A). The remaining cell types and their numbers were estimated using 
regional distributions from the Blue Brain Cell Atlas.

To reconstruct local connectivity, we computed the orientations of each morphology (Figure 1BC) using Rodarie et 
al.’s method4. We leveraged this information to orient neurons including granule cells and their ascending axons. 
Additionally, it will be used to bend the parallel fibers of our model following the external surface of the region. We 
applied voxel intersection and point clouds connection strategies and synaptic in- and out-degree ratios reported 
in De Schepper et al.5.

We assigned point-neuron electrical parameters to each cell type, and synaptic parameters to each connection 
type, according to Geminiani et al.9. The resulting scaffold model has been simulated using the
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BSB interfacing with the NEST simulator5. The model will be structurally and functionally refined as more data 
become available.

Results and Discussion
The final scaffold model has 3,113,153 neurons, with 2,877,812 Granule cells, 45257 Golgi cells, 10956 Unipolar 

brush cells, 234 Lugaro cells, 3240 Globular cells, 3512 Purkinje cells, 3875 Candelabrum cells, 80952 Basket cells and 
87314 Stellate cells (see Figure 1D).

The connectome defines a precise picture of the local connectivity.

Preliminary simulations are ongoing, to validate the dynamics of the declive region in resting-state and under 
proper stimulations. Our goal is to leverage this circuit to study fear conditioning and emotions responsible 
circuits in cerebellum. Moreover, our strategy can be extended to reconstruct other cerebellar regions. A full-scale 
cerebellum network will allow us to analyze subregions specificities and their interactions. Finally, we will 
investigate mechanisms to simulate pathological states such as autism10.
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Figures



Figure 1: Sagittal views of the declive model.
A - Placement of the Purkinje Cells in the newly created Purkinje Layer based on linear density. A sagittal slice of the Nissl volume from the Allen institute is 
displayed in levels of grey with the overlaid annotated Purkinje layer in yellow. The granular layer is clearly visible as a darker band due to its high cell density. 
Placed Purkinje cells are displayed in orange.
B - Orientation field defined by one vector for each voxel of the volume. Orientations of the ascending axons were calculated following a gradient from the 
arbor vitae fibers towards the molecular layer.
C - Depth for each voxel of the volume. This corresponds to the distance between each voxel and the outer border of the molecular layer following the orientation 
field. The depth of each voxel in the molecular layer is used determine whether the neurons in it are stellate or basket cells.
D - Cell positions. Placement of the different cell types of the declive.
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INTRODUCTION/MOTIVATION

Cell detection and white matter segmentation are crucial steps for the creation of precise connectivity datasets in the 

macaque brain. However, they are time-consuming procedures and constitue a bottleneck to the creation of large size 

connectivity datasets. The open source histology viewer QuPath along with deep learning methods enable automated and 

semi-automated processing of histological slides, opening the way to high throughput imaging in histology. Many 

segmentation approaches have been developed for human and mouse MRI images1,2, but few are available for macaque 

MRI3. Additionally, such processing pipelines are not available for macaque histology. Here, we developed a semi-

automated pipeline for cell detection and white matter segmentation in the macaque brain that reduces the processing 

time and improves the reliability of parcel annotation.

METHODS

Histological sections were obtained from macaque brains following injection of fluorescent retrograde tracers in target areas4, 

and mounted on individual slides and cover slipped for scanning. Fluorescence images were first obtained with a x20 

objective using a high-throughput slide-scanner5. Histological sections were stained with Nissl in order to be rescanned 

with a bright field (x5 objective), for delimiting the white-matter/gray-matter boundary.

Fluorescence images

For the tissue segmentation, we created annotations inside and outside the tissue (N = 1 slides) to train a pixel classifier 

using QuPath with a multi-layer perceptron classifier. For labelled cell detection, we created a permissive cell 

detector for each channel and refined the detection with a random-tree classifier. Each object classifier was trained on 

200 objects classified as “cell” or “artefact” (N = 3 entire sections) under the supervision of human experts for validation.

Nissl images

We manually annotated the regions corresponding to white-matter, tissue and background (as three binary masks) for 

79 slides and divided them into 14191 tiles to train a multiresolution (x5, x1.25, x0.3125) convolutional neural network. Binary 

masks were then converted to polygons using the pypotrace library6. Polygons from the fluorescent image and the Nissl 

image were merged using linear registration7 on the rasterized tissue polygon.
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We used QuPath version 0.4.1, Python 3.9, keras 2.3.0, SimpleElastix 2.0.0 and pypotrace 0.2.

RESULTS AND DISCUSSION

We evaluated the efficiency of the pipeline for (i) time saved on manual annotations and (ii) precision of the 

fluorescence to Nissl registration and merger. In the first configuration (fully manual), the operator draws the white 

matter contour without any automated approximation. In the second configuration (semi-automated), the operator starts 

from the automatically generated contour and refines it. Using 3 slides, the second configuration reduced the time needed 

per slide by 3.6-fold. We also evaluated the precision of the automated merging of fluorescence-related annotations 

and Nissl-related annotations and showed that the deviation in white-matter boundary is minimal when comparing the 

two procedures (21.8 ± 14.35 µm). The automated segmentation will be improved iteratively through a human feedback 

loop. We will extend the training to the claustrum region8 where there are numerous white matter neurons, which 

makes segmentation very challenging. Further validations of the accuracy and precision of the semi-automated 

white matter segmentation and the cell detection methods will be done by comparing the variability between 

fully manual and semi-automated processing. This pipeline will strongly accelerate and facilitate the processing of 

retrograde labelling enabling the host team to: (i) construct a large connectivity dataset; (ii) develop a multimodal atlas of 

the macaque brain; (iii) complete a study on claustrum cortical neurons and adjacent white matter cortical projecting neurons 

in a study looking at claustrum hub functions in the cortex.

Keywords: pipeline, cell detection, brain segmentation, macaque
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Introduction: Research in small animals often depends on comparisons of cellular and 
molecular features in animal cohorts, requiring precise localizations of the observed 
differences. While numerous methodologies are available to enumerate labelled features 
visualized in microscopic images, it remains difficult to combine them into coherent and 
reproducible workflows. The EBRAINS research infrastructure now offers a robust, open and 
low-threshold analytic environment tailored for analysis of experimental mouse and rat 
brain image data in atlas context.

Methods: The EBRAINS atlas services (https://ebrains.eu/services/atlases) offer several 
workflows for organizing, analyzing and sharing brain research data. Users can create their 
own workspace and combine methods for 1) interactive inspection of high-resolution 
images;
2) automatic1 and user-guided spatial registration3,4 of brain section images to a volumetric 
reference atlas; 3) annotation of atlas-aligned image series5; 4) extraction5 of spatial 
coordinates for features of interest; 5) whole brain labelled object distribution analysis7, 
with metadata management according to the FAIR principles.

Results: We present examples of typical analytic workflows2, illustrating how the available 
suite of tools were combined and which results were obtained. One example workflow is to 
apply atlas overlays to histological images using WebAlign3 and WebWarp4, to inspect and 
map tract-tracing connections in the images using the LocaliZoom5 annotation tool, and to 
visualise resulting point clouds in the Meshview6 3D viewer. Comparison and contrast of 
point clouds obtained by this or other methods with MeshView is yet another possible 
approach. Users may also count cells and examine distributions across brain regions by 
combining the registration tools with the Nutilweb7 tool that supports quantification. All the 
tools have user-friendly web interfaces, with extensive online user manuals and user 
support.

Discussion: The online tools and workflows presented are based on standalone software 
versions8,9,10 already available on EBRAINS, with the addition of new features such as online 
annotations and extraction of feature coordinates. To our knowledge, these tools represent 
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the first fully open access online service for neuroscientists, developed in close interaction 
with users in the neuroscience community.
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Introduction:

The increase in both rat and mouse brain datasets has made it crucial to integrate and analyze the 
data within a common spatial reference frame. However, the current process of registering histological 
brain section images to volumetric brain atlases is time-consuming and requires anatomical expertise. 
To address this challenge, we have trained a deep neural network, DeepSlice1, to automatically 
recognize the atlas position of coronally cut histological sections from both rat and mouse brains.

Methods

The DeepSlice toolbox was created to anchor mouse and rat brain histology to the Waxholm Space 
atlas of the rat brain and Allen Mouse Brain Common Coordinate Framework. The accuracy of the 
algorithm was compared to human anatomists for mice. DeepSlice is based on the Xception neural 
network architecture2 and trained on data from the Allen Institute for the mouse and data from 
Ebrains for the rat.

Results and Discussion:
DeepSlice achieved accurate anchoring of rat brain histology in seconds, while a human anatomist 
would take hours to perform the same task. The output of DeepSlice is compatible with the QUINT



workflow3, including QuickNII4 (RRID: SCR_016854), allowing predictions to be modified by users, and 
VisuAlign (RRID: SCR_017978) enabling further user defined non-linear deformations. DeepSlice is 
freely available as both a Python package and web application.

We are yet to quantify performance of the rat but the mouse performs comparably to human 
neuroanatomists.

Keywords: DeepSlice, rat brain histology, Waxholm Space atlas, deep learning, reference space
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INTRODUCTION/MOTIVATION

Since the turn of this century, new and powerful cell labeling techniques have allowed the 
consistent and complete labeling of axonal arborizations of individual long range projection neurons 
(LRPNs) in mouse [1]. The prospect of creating a connectome at the cellular level, together with new 
developments in the automated scanning of whole (rodent) brain volumes, has resulted in a the 
release of thousands of fully reconstructed LRPNs [2,3,4]. In parallel with this number-driven 
‘industrial’ approach, there are smaller scale, hypothesis-driven projects that focus on particular 
populations of neurons, perform targeted single-cell labeling experiments and explore the resulting 
data to the maximum possible extent. In this setting, axons are traced from a stack of brain slices, 
stained to highlight particular features and mounted on a glass slide. Tracing axons from this data is 
a two step process:

1. Find all pieces of axon in each individual section.
2. Connect pieces of axon across adjacent sections to create a full axonal 

reconstruction, a process that we refer to as alignment and stitching.

The first step is a manual procedure that can be carried out in commercially available microscope-
attached software such as Neurolucida [MBF Bioscience]. In this work we present a workflow to 
automate the second step which, when performed manually, is the most tedious part of the process.

METHODS

Our alignment and stitching approach consists of:

1. Preparation of a structured dataset that contains for each section all pieces of axon and a 
section image in a shared coordinate system. Implemented in Python.

2. Alignment of sections using two complementary methods:
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a. For sections that contain only a few pieces of axon: use a tissue-based alignment tool 
that presents the user with the overlay of (a) a tissue section, (b) the contours of the 
adjacent section, and (c) all pieces of axon that are traced in the two sections. The 
user manually rotates and shifts the overlay to obtain the best possible match. 
Implemented as a web-based tool.

b. For sections with many pieces of axon: align sections to create a maximum number of 
matching pieces, using a modified version of the Dercksen [5] algorithm. Implemented 
in Python.

3. Stitching pieces of neuron using a greedy approach that starts with an initial segment (the 
soma), and at each iteration connects a piece from the set of unconnected pieces to one of the 
endings of the growing neuron, in such a way that the added axonal length is minimal, and 
permitting only stitches between adjacent sections. Implemented in Python.

4. Validation: visualize the applied stitches in step 3 as arrows, and allow the user to mark 
incorrect stitches, before re-running step 3. This makes use of the HBP Morphology Viewer 
[6].

RESULTS AND DISCUSSION

The use-case that we present here concerns a thalamocortical neuron that is present in 14 coronal 
sections of 50 micron thickness. In 10 sections, the number of axon pieces is sufficient for piece-
matching alignment (step 2a, Fig 1a), while in the remaining sections we rely on tissue-based 
alignment (step 2b, Fig. 1b). In the validation, a few stitches are to be discarded (Fig. 2). In the end 
result we apply nearly 500 stitches with an average length of 12 microns, which sums up to 18% of the 
neuron’s total axonal length.

Applying the pipeline not only saves days of work, it is also reproducible in that it keeps track of where 
stitches have been made, and it results in a known correspondence between axon segments and tissue 
sections. The pipeline is currently extended for the use case where multiple neurons are present in the 
stack, and integrated with a pipeline to register the neuron to a common reference space [7].

Keywords: Long range projection neuron, axonal reconstruction, neuronal morphology, stitching, 
thalamus, cortex
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Figure 1: Alignment of the neuron. (A) Automatically position adjacent slices to maximize the number of 
matching pieces of axon. Red lines indicate the optimal rotation/shift to be applied. (B) In case of too few 
pieces of axon, manually align tissue sections using a web-based tool. Shown is a tissue section with the next 
(to be aligned) section in the form of an edge-detected contour on top of it.

Figure 2: Stitching validation. 3D render of a stitched thalamocortical neuron using the HBP Morphology 
Viewer [6]. Stitches (red cones) are enlarged so they can be marked as ‘not allowed’ for a re-run of the 
optimization process.
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Introduction

Connectivity of the human brain can be studied by a number of techniques in different 

modalities. In particular, diffusion MRI allows to map structure of white matter fascicles 

connecting gray matter areas. At the same time, anatomo-functional connectivity can be 

estimated by means of functional tractography of intracerebral electrical stimulation. Here, we 

present integration and cross validation of connectivity maps provided by those two modalities. 

Moreover, we leverage their complementarity, i.e. we combine the geometry of connectivity 

pathways obtained from diffusion-MRI with signal propagation time obtained from electrical 

stimulation. As the result we obtain speeds of signal propagation in white matter and timescales 

of local processing in gray matter. These results are differentiated with respect to specific brain 

areas and connections.

Methods

Our study is based on multi-subject analysis engaging two disjunctive cohorts of humans. The first 

cohort, CONNECT/Archi dataset [1], provides diffusion MRI HARDI data of 77 healthy subjects. 

These data have been clustered in order to obtain white matter pathways repetitive between the 

subjects [2, 3] what allowed us to use them in the context of the second cohort: brought together 

by the F-TRACT project (http://f-tract.eu) [4, 5] over one thousand pharmaco-resistant epileptic 

patients who, in the course of preparation to a brain resection surgery, underwent intracerebral 

implantation with stereoencephalographic EEG (SEEG) electrodes.

http://f-tract.eu/


In order to increase spatial resolution, we divided white matter pathways according to their 

ending gray matter parcels as defined by the AAL parcellation [6]. We obtained 322 white matter 

bundles. For each bundle we identified nearby SEEG electrodes and considered stimulations 

performed at the end of the bundle – in gray matter - and recorded anywhere near the bundle. 

We computed spatially dependent distribution of probability of registering a significantly strong 

response to stimulation. Stimulations in each direction were considered independently, resulting 

in two distributions per bundle. We introduced normalization methods based either on an inter-

bundle comparison or on a null distribution. Finally, following the assumption that signal 

propagation speed is constant along a bundle, we performed linear regression and obtained 

speed per white matter bundle (in each direction) and time constants of local processing in gray 

matter per AAL parcel.

Results

We found that the probability of observing a significant response to SEEG stimulation is greater 

when the stimulating and recording intracerebral electrodes are likely to be connected by a white 

matter pathway. This result holds regardless of distance between the stimulation and recording 

sites, although probability strongly decays with this distance.

Projection of the probability onto individual bundles yields 644 distributions. Here, as an example, 

we present results obtained from stimulation performed to the left middle temporal pole. The 

bundles mediating direct propagation of the signal resulting from such stimulation are presented 

in Figure 1. Color coded is probability of observing a significant response to stimulation and 

maroon codes for no data. Speed of signal propagation from this site to e.g. occipital inferior left 

parcel was found to be 13 m/s +/- 3 m/s. Finally, in accordance with earlier studies [5], the map of 

local processing time constants suggests that primary brain areas respond faster than higher brain 

areas.

Conclusions

We integrated structural and functional connectivity data obtained from two different modalities 

– diffusion MRI and SEEG-based connectivity mapping – and two disjunctive large cohorts of 

humans. We found concordance between the modalities and we computed quantities not 

accessible from each modality alone, namely speed of signal propagation in the white matter and 

timescale of processing in the gray matter. The brain atlas with our results will be shared online.
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Figures

Figure 1. Projection onto white matter bundles of the probability of observing a significant response 

to SEEG stimulation in the left middle temporal pole. Maroon codes missing data
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INTRODUCTION/MOTIVATION

The Human Brain Project aims to decrease the gap between microscopic and macroscopic features of 
the brain, by defining the structure of a multiscale connectome and its inherent variability between individuals. 
One of the components of this target connectome is the structural connectivity induced by millions of white-
matter fibers linking regions across the brain, that diffusion MRI can highlight. With the potential of the large 
Human Connectome Project[1] dataset and the innovative algorithm Constellation[2], we first constructed an 
adequate structural connectome atlas and then obtained individual parcellations and connectomes for each 
individual of the dataset by applying a projection method.

METHODS

Preprocessing steps consisted in generating the tractographies from the outstanding diffusion MRI data 
of 1004 subjects of the S1200 HCP release using FSL probtrackx2[3] mode and resampling the Freesurfer[4] meshes, 
extracted from the 3T-MRI images, of these subjects to the fs_LR 32K referential, according to HCP guidelines.

Using a group of 200 of these subjects, we used Constellation software to subdivide both the Desikan-
Killiany atlas[5] and the GapMaps of the Julich-Brain[6] atlas (v2.9[7]) projected onto the surface[8]. For each region of 
interest, by applying a machine learning-based approach on the connectivity fingerprints of the subjects of the 
group, various numbers of subregions were considered. The selection of the most adequate number of such 
regions yielded an optimal parcellation, in the sense that each parcel corresponds to a region whose connectivity 
to the rest of the brain is stable throughout the population.

For each atlas, the optimal parcellation was then projected onto individual subjects of the database by 
determining the most probable label of each vertex. Therefore, by taking into account the fibers organization of 
each subject, we obtained 1004 fine-tuned individual parcellations that were used to compute macroscopic 
structural connectomes stable across the population. These individual parcellations were also coupled with 
resting-state functional MRI images to compute functional connectomes that describe probable communications 
between the corresponding parcels.

Additionally, as part of the Brainvisa suite[8], Constellation was adapted to CEA’s supercomputing center, 
one of the flagships of Fenix Infrastructure.

mailto:clement.langlet@cea.fr


RESULTS AND DISCUSSION

Hence, we obtained two atlases (Figure 1): Constellation, a whole-brain structural-based connectivity 
atlas, and a Constellation-augmented Julich-Brain atlas by integrating the parcellated GapMaps to the original 
atlas. For each of these atlases, we provide to the modeling community[9] the 1004 individual parcellations 
conjointly with their corresponding structural and functional connectomes[10] (Figure 2).

This work provides solid foundations for the study of the human connectome and opens new 
perspectives for the understanding of the brain's intrinsic variability both in terms of parcellations and 
connectomes. The choice of the optimal parcellation as base for the projection process can still be refined, 
especially in conjunction with current cytoarchitectonics mapping. Finally, in the short term, these connectivity-
consistent parcellations will give rise to heritability studies as a validation entrypoint for larger surface region-
based genetic studies.
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INTRODUCTION/MOTIVATION

We need new labelling and imaging protocols to be able to extend detailed human brain mapping (Amunts et al., 2020) and 

atlasing (https://ebrains.eu/service/human-brain-atlas) with high-resolution fibre (Axer & Amunts, 2022), and 

molecular information originating in animal research. Such developments would facilitate better understanding of 

the interplay between cell diversity and connectivity, and how it gives rise to the described functional specificity of 

cytoarchitectonically defined brain areas.

We combine multiple independent optical imaging techniques to acquire high-resolution data of different scales (micron 

and sub-micron) as well as different modalities (fibre and cell type) of the same human brain section to address their 

relationship.

METHODS

We used 3 different methods to generate independent information channels mapping fibre-, as well as cell- 

architecture in the same human brain section. We acquired 3D-PLI (3D Polarised Light Imaging, Axer et al., 2011) data for 

micron, and TPFM (two photon fluorescence microscopy, Costantini et al., 2021) for sub-micron fibre resolution, followed 

by bright field light microscopy of molecularly identified cell types, sequentially, at precisely the same location.

RESULTS AND DISCUSSION
We show that it is feasible to image both fibres (at multiple scales), as well as molecularly identified cell types, in the same 

human brain section. This will enable us to further explore their contribution to the differences between cytoarchitectonic 

areas, and mapped borders.
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INTRODUCTION/MOTIVATION

Spatial anchoring of high-resolution volumes of interest (VOIs) from different imaging experiments into the detailed 

anatomical context of a high-resolution reference model such as the BigBrain1 became an important practical problem 

with increasingly available datasets during recent years. Typical examples include the integration of high-resolution MRI, 3D 

Polarized Light Imaging, or X-ray computed tomography measurements of brain tissues, which would be appropriately 

organised in the detailed anatomical context of the BigBrain model. However, working on a proper anchoring of such 

imaging data to the full-resolution reference template is out of reach for many neuroscientists due to the sheer size of the 

datasets, the lack of available tools, but also the problem to identify correspondences between the datasets in a reliable and 

reproducible way. Here we present a new release of the interactive volumetric alignment tool VoluBA, which allows anchoring 

of volumetric image data to reference volumes at microscopical spatial resolutions. VoluBA is implemented as an online 

web service and enables interactive manipulation of image position, scale, and orientation, flipping of coordinate axes, 

and entering of anatomical point landmarks in 3D. The resulting transformation parameters can be downloaded in JSON 

format or used to view the anchored image volume in the interactive atlas viewer siibra-explorer.

METHODS

VoluBA offers a highly interactive workflow. Users can log in with their ORCID or EBRAINS account to upload a dataset into a 

private working space to perform the anchoring process. The BigBrain model serves as the default reference volume. The 

input volume is presented as a graphical overlay in a 3D view with orthogonal cross sections, which utilizes Google’s 

neuroglancer engine2 (Fig. 1). The latest VoluBA release provides options to finetune the overlay by customizing contrast, 

brightness, colormaps, and intensity thresholds. The 3D view can be used to directly manipulate the relative position and 

orientation of the input volume. A dialogue window further enables adjustment of its voxel scaling and axis orientations. 

These settings determine a rigid transformation between the two volumes, which is modelled as a 3D affine matrix. A 

3D landmark editor can then refine the

mailto:t.dickscheid@fz-juelich.de


transformation by specifying pairs of corresponding points between the volumes. This is further facilitated by an optional 

side-by-side navigation mode, where the incoming and reference volume are shown in two separate views. From a set of 

landmarks, the affine transformation matrix can be recalculated with additional degrees of freedom, including shearing. 

Alignment actions can be performed and repeated in arbitrary order, supported through a history browser which allows 

to undo individual anchoring steps.

Fig. 1: After uploading a volumetric dataset, various filters like contrast or colour maps allow to configure the 

presentation of the data. The user can position the volume on top of a reference brain (here: the BigBrain model) by shifting 

and rotating the input in any of the 3 planar views. Further linear geometric alignments can be adjusted in a parameter 

window. For more detailed affine adjustment, corresponding point landmarks can be entered.

RESULTS AND DISCUSSION

Anchoring results from VoluBA can be used in several ways. First, users can download the parameters of the affine 

transformation matrix as a JSON file for reference. The stored transformation file can be re-imported in VoluBA, and due to 

its simple structure be utilized in other tools and workflows. Furthermore, VoluBA can generate a private URL to view 

and share the anchored volume as a remote dataset in neuroglancer-based image viewers. Most importantly, VoluBA offers 

a direct link to open the anchored volume as a semi-transparent layer in the interactive atlas viewer siibra-explorer (Fig. 2). 

VoluBA has been used successfully by EBRAINS curation teams and different research labs to anchor volumes of interest to BigBrain 

reference space. Examples include a hippocampus sample imaged with MRI and 3D Polarized Light Imaging3, a hippocampus 

sample imaged with phase-contrast computed tomography4, and a 3D model of the human brain stem5. VoluBA is openly 

accessible in its most recent version at http://voluba.apps.hbp.eu. Detailed documentation is available at 

https://voluba.readthedocs.io/en/latest/.

http://voluba.apps.hbp.eu/
https://voluba.readthedocs.io/en/latest/


Fig. 2: Users can view the anchoring result as an overlay in the interactive atlas viewer siibra-explorer. Thus, the user can 

directly inspect the aligned data superimposed with the full atlas context and compare it to atlas regions as well as other 

data linked to the same reference space.

Keywords: brain atlasing, spatial anchoring, image registration
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INTRODUCTION/MOTIVATION

Studying the human brain requires to capture its structural and functional organization in a common spatial 
framework. Despite progress in imaging and mapping however, access to information of different scales and modalities 
for applications ranging from visual exploration to computational workflows remains a challenge. We present siibra, a tool 
suite that implements a multilevel atlas of the human brain by providing streamlined access to reference templates at 
different spatial scales, complementary parcellation maps, and multimodal data features. The tool suite includes a 
web-based 3D viewer and a Python library to support a broad range of use cases. It utilizes EBRAINS as a hosting platform 
and implements interfaces to established neuroscience resources. Tools and contents are freely available.

METHODS

siibra-explorer is the interactive 3D atlas viewer in EBRAINS hosted at https://atlases.ebrains.eu/viewer. It integrates 
neuroglancer [10] and a custom surface view to navigate brain templates and parcellation maps at multiple resolutions. 
siibra-python (https://siibra-python.readthedocs.io) is a software library for using the atlas framework in computational 
workflows, well compatible with established tools such as nibabel and pandas. It exposes the core functionality to siibra-
explorer through a REST API. Motivated by community ideas [3], siibra implements semantic concepts for parcellations 
and reference spaces, and separates them from their spatial representations in image and surface form. It builds on Julich-
Brain cytoarchitectonic maps [4], complements them with functional modules [5] and fiber structures [8], and integrates 
the microscopic BigBrain model [2] with the MNI152, Colin27 [7] and fsaverage [6] spaces. Regions and locations are linked 
with data of molecular, cellular, and functional architecture, connectivity and population variance (Fig. 1). A unified 
interface provides straightforward access to 3D volumes in different forms, including NIfTI images, various meshes, and 
Terabyte- sized multiresolution data. Content is stored as public datasets on FENIX (https://fenix-ri.eu) with metadata 
curated in the EBRAINS knowledge graph (https://kg.ebrains.eu) according to FAIR principles. This is 
complemented by interfaces to additional resources such as the Allen brain atlas [1].

RESULTS AND DISCUSSION

siibra supports a range of neuroscientific use cases. Workflows often start with specifying locations in the brain,
e.g by interactive navigation in the 3D viewer, providing 3D coordinates, or loading a NIfTI file (Fig. 1A). Siibra then assigns 
regions from different parcellations to coordinates, peaks or 3D structures (Fig. 1B). Assignment utilizes probabilistic maps 
(e.g. functional, cyto- or fiber architectonic maps), and distinguishes between incidence,
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correlation and overlap of structures. To evaluate structures defined in different spaces, siibra automatically warps locations 
between reference templates using precomputed diffeomorphic transformations [9]. Resulting matched brain regions and 
coordinates can then be used to query features that capture various regional aspects of brain organization (Fig. 1C), so far 
covering cellular (cell densities; staining profiles) and molecular architecture (receptor densities; gene expressions), structural 
and functional connectivity from different cohorts, and dynamic access to a growing set of histological data. Data structures 
are tagged with comprehensive metadata and use established standards for tabular and image data. In summary, siibra 
facilitates multimodal neuroscience analyses by offering streamlined access to a multilevel human brain atlas 
framework that covers different resolutions and complementary aspects of brain organization. With an interactive web 
interface and Python client, it supports a broad range of workflows from neuroimaging, AI, and computational neuroscience. 
siibra is unique in linking brain features from molecular to microanatomical level into a common atlas framework, and 
designed to be extended with new datasets, maps, and routines.
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INTRODUCTION: Neuroscientists use a range of experimental methods generating increasing 
amounts of data describing the brain. The multimodality and abundance of brain data pose a 
challenge for efforts to organize, query, analyze and integrate data in a meaningful way. To achieve 
this, it is necessary to represent different types of data in a standardized way to allow comparison 
of anatomical locations and to ultimately ensure data findability and reusability1. The EBRAINS 
research infrastructure employs three-dimensional (3D) brain atlases to organize, combine, and 
compare multimodal and multilevel neuroscience data. For the atlases to support data integration, 
spatial queries and co-visualization, we propose using positions defined in a 3D brain atlas as 
common denominators for representing different types of data as geometric objects in 3D atlases. 
We here present a conceptual framework, Locāre (latin: to place), for positioning and integrating 
brain data within atlas coordinate systems2 for the mouse and rat brain (Fig. 1).

METHODS AND RESULTS: Assessing a range of openly available murine neuroscience datasets, we 
find that information describing data positions in the brain can be sorted into three categories: 
images, spatial coordinates, and/or semantic descriptions (Fig. 1, step 1). For each of the three 
information categories, we have specified a process for defining positions in atlases, using image 
registration software, extracting spatial coordinates, and deduction of positions from atlas terms or 
semantic descriptions (Fig. 1, step 2). Following these processes, it is possible to derive combinations 
of atlas coordinates specifying data locations as points, segments, polygons, or polyhedrons, within a 
3D brain atlas (Figure 1, step 3). We exemplify how multimodal and multilevel datasets can be 
combined and co-visualized in the Waxholm Space rat brain atlas (v4, RRID: SCR_0171243,4,5,6; Fig. 2).

DISCUSSION: This conceptual framework allows inherently disparate data to be spatially integrated, 
as the process relies on information documenting data locations (images, spatial coordinates, and 
semantic information), which is independent of the type and format of the data. We discuss the use 
of community standards (openMINDS: open Metadata Initiative for Neuroscience Data Structures, 
https://github.com/HumanBrainProject/openMINDS/; SANDS: Spatial Anchoring of Neuroscience 
Data Structures, https://github.com/HumanBrainProject/openMINDS_SANDS/) to format the 
output from the integration process, and how the standardized output may be used to increase 
findability and reusability of open data in the EBRAINS Knowledge Graph 
(https://search.kg.ebrains.eu/) and the Siibra Explorer (https://atlases.ebrains.eu/viewer/) by 
enabling data visualization and spatial queries. The Locāre framework thus streamlines the process 
of integrating experimental brain data into atlases, facilitating reusability and findability of open 
data.

Keywords: brain atlas, FAIR data, data integration, open data, rat brain, mouse brain
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Figure 1. Framework overview. Multimodal and multilevel neuroscience data are subjected to the Locāre framework to 
be able to define standardized spatial representations of data in a common atlas.

Figure 2. Spatial representations of data within the Waxholm Space rat brain atlas v4. Examples of data represented by 
a sphere, a polyhedron, a polygon or a cylinder: A) EEG electrode array. B) Cellular features. C) Cellular soma. D) Imaging 
volume (orange box); camera field-of-view (yellow top layer). E) Atlas annotation (cornu Ammonis 1, CA1). F) Brain 
section image (coronal orientation). G) Electrode track.
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INTRODUCTION/MOTIVATION

Image segmentation is a common task in biomedical image analysis. In neuroscience, it is frequently used to find features in 

brain images acquired at mesoscopic, microscopic or nanoscopic resolution. The goal of our contribution is to 

automate this task with machine learning, while allowing users retain control over the algorithm performance through 

interactive training on their own data. Our software ilastik [1] has already been successfully used as a standalone tool for 

segmentation in a wide variety of biological domains, ranging from cryogenic electron tomography to regular camera images. 

Here, we present the integration of ilastik with the EBRAINS platform, allowing users to leverage the computational 

resources provided through EBRAINS HPC centres directly from their browser. Furthermore, webilastik is integrated with other 

brain atlas analysis tools in the EBRAINS ecosystem.

Figure 1 ilastik uses machine learning to automatically segment brain images, interactively guided by user brushstrokes

METHODS

Webilastik is implemented on the basis of the Neuroglancer viewer[2] which is also used in the EBRAINS siibra explorer[3]. 

The web-based viewer has been extended by interactive segmentation capabilities of ilastik, allowing users to process 2D or 
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3D data available through EBRAINS, including private data uploaded to Collab Buckets. While the computations are executed 

on the HPC resources, a simple EBRAINS account is sufficient to launch a webilastik session, interactively train a classifier on 

a representative sub-volume of the data and submit a larger dataset for offline processing. The bespoke webilastik backend 

automatically distributes the computations over dynamically allocated HPC resources, maintaining the interactive user 

feedback loop even for very large brain images. The results can be downloaded from the Collab Bucket or used as input for 

other EBRAINS analysis tools such as nutilweb.

RESULTS AND DISCUSSION

Webilastik is freely available to EBRAINS users at https://app.ilastik.org or as part of the QUINT workflow Collab 

(https://wiki.ebrains.eu/bin/view/Collabs/quint-demo). Users can upload their own data or use one of the curated EBRAINS 

datasets. The computations are performed remotely on the HPC centers compute resources, allowing user annotation and 

training sessions to persist when the user is offline. This development constitutes a major advance over the monolith ilastik 

application as described in [1] which is limited to interactive sessions on a single machine. Ilastik documentation is available 

at https://www.ilastik.org/documentation/index.html. Its use as part of the QUINT workflow (Quantification and Spatial 

Analysis of Features in Histological Images From Rodent Brain) is described in [3].

Keywords: image analysis, software, EBRAINS
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INTRODUCTION/MOTIVATION

The observed variation in the age at onset, severity of pathology and rate of cognitive decline in Alzheimer’s disease (AD) 

patients, despite presence of risk mutations, suggest that background genetic variability may confer protection in some 

individuals. The AD-BXD mouse population1 that incorporates 5 familial AD mutations (5XFAD) with genetic diversity 

reflects this variation in symptom; and provides a unique platform for exploring genotype-phenotype interactions, with 

potential for revealing resilience genes and pathways2. While immunohistochemistry (IHC) is the gold standard for 

revealing pathological features, new methods are needed to support brain-wide characterization in high-throughput 

studies. In the BRAINSPACE project, we aimed to develop such new methodologies and have applied them to a subset of 

AD-BXD mice.

METHODS

Here, we utilize a new atlas-based method (the QUINT workflow)3 to establish brain-wide alterations in neurons, microglia, 

reactive astrocytes and beta-amyloid across 40 mice of multiple AD-BXD strains at two ages (6 and 14 months). The method 

uses the Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3)4 to define customized regions for the 

quantification. To meet the needs of the present high-throughput study, new functionality for quality control is 

added to the workflow to 1. Screen section images to test their suitability for QUINT analysis, and to 2. Assess the quality 

of the atlas-registration to each region as performed in the workflow (QCAlign software, RRID: SCR_023088). The second 

assessment is performed at a customized level of the atlas- hierarchy that supports verification based on the manual 

assessment of overlap between delineations supplied by the atlas and the boundaries revealed by labelling. The tools in 

the QUINT workflow are shared through the EBRAINS platform (ebrains.eu/service/quint), and are developed to support 

open and FAIR science5.

RESULTS AND DISCUSSION

Here, we demonstrate near-global increases in microglia, reactive astrocytes and beta-amyloid across the brains with 
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increasing age, with little effect on neuronal loads. Despite small sample size, there were also suggestions of individual 

differences in NeuN loads amongst strains. With the addition of the new QCAlign tool, we were able to remove damaged 

sections from the analysis according to strict criteria, and to document high-quality registration across the customized 

regions that were used for the quantification. In a future study, the results will be used together with behavioural and 

transcriptomic data to stratify AD-BXD strains as resilient or vulnerable, and to reveal gene expression differences across 

resilient and vulnerable strains that may represent novel targets for therapeutic intervention. In conclusion, we 

demonstrate that the QUINT workflow is a highly effective method for registering and quantifying pathological changes in 

genetically diverse rodent models.
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INTRODUCTION/MOTIVATION

The dorsolateral prefrontal cortex (DLPFC) is involved in executive functions, including working memory, 

value encoding, attention, and decision-making1. Recent studies supported the notion that the DLPFC 

is not a single unit but consists of an anterior-posterior and dorsal- ventral axis including small 

functionally differentiated regions2,3. This functional heterogeneity does not correspond to existing 

parcellation schemes, varying additionally among each other, e.g., regarding their number of areas. 

Cytoarchitectonic mapping studies showed a subdivision of the DLPFC, for example, into two (area 9 and 

464), three (area 9, 9-46, and 465), or four (area 9, 46, 9/46d, and 9/46v6). Macroanatomical parcellations 

are based only on gyri and sulci7,8, that hardly reflect the underlying microstructural organization. 

Therefore, there is a need for a detailed cytoarchitectonic parcellation in 3D, that integrates variations 

in brain structure.

METHODS

For cytoarchitectonic analyses, serial cell body-stained sections of ten human post-mortem brains (five 

male, five female; age range from 30 to 86 years) from the Body Donor Program of the Department of 

Anatomy of the University of Düsseldorf were analyzed. Methods described in detail in9. Borders 

between areas were identified by image analysis and a multivariate, statistically reliable mapping 

approach based on grey-level index (GLI-) profiles that reflect the cytoarchitecture. Area volumes were 

calculated and compared for putative interhemispheric and sex differences. Considering 

interindividual variability, probability maps were created for each area in stereotaxic space, assessing 

the variance between the individual brains.
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RESULTS AND DISCUSSION

Five new cytoarchitectonic areas, SFG2, SFG3, SFG4, MFG4, and MFG5, were mapped in serial sections over 

their full extent in both hemispheres of the sample. The areas were located mainly on the superior and 

middle frontal gyrus but also reached the neighboring inferior and superior frontal sulci. A hierarchical 

cluster analysis based on GLI profiles revealed cytoarchitectonic similarities and dissimilarities within 

this group of areas and with respect to neighboring ones. Neighboring frontal pole areas Fp1 and Fp2, 

more posterior areas 8d1, 8d2, 8v1, and 8v2 and areas 44 and 45 (Broca-region) were clearly 

separable10. Similarities to previously identified frontal areas10 were observed: Area SFG3 and area 

MFG5, mainly situated within the inferior frontal sulcus, clustered with area SFS2 because of different 

thickness in layer II and IV. Area SFG4 formed a cluster with area MFG4. Both areas had characteristics 

of BA9 and BA46. This could be interpreted as the previously outlined transition area5, which could now 

be subdivided into two parts: area SFG4 with loosely packed cells and sharp borders and area MFG4 

with densely packed cells and a rather diffuse layering.

The analysis of volumes revealed neither statistically significant gender nor interhemispheric 

differences.

All five areas were superimposed in stereotaxic reference spaces (MNI Colin27 and ICBM152casym), 

and probability maps were created as a microstructural reference for the brain function. According to the 

assumption of a functional subdivision into anterior and posterior subregions2,3, SFG2 and SFG3 could be 

assigned to anterior DLPFC areas, whereas SFG4, MFG4, and MFG5 correspond to posterior areas. While 

anterior DLPFC areas are attributed to episodic control for action selection based on ongoing context in 

relation to more complex cognitive thinking, posterior parts correspond to action selection based on 

sensory input2,3. Activation patterns of the posterior subregion have been related to the execution of 

movement as well as working memory processes2, which correlate with the position of areas SFG4 and 

MFG4. What the internal differences of the areas in the anterior and posterior subregions means in 

terms of function remains a project of future research.
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INTRODUCTION/MOTIVATION
Three-dimensional (3D) brain atlases provide spatial reference for experimental neuroscience data shared via 
the EBRAINS research infrastructure. Atlases are used to assign anatomical location to data, enabling 
researchers to interpret, integrate, and compare observations and measurements collected from different 
brains. The Waxholm Space (WHS) rat brain atlas (RRID: SCR_017124) is an open source 3D atlas based on a 
high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) dataset acquired ex-vivo 
from an adult male Sprague Dawley rat brain1,2,3. An important limitation for this atlas has been lack of detailed 
subdivisions of several major brain regions, such as the thalamus, basal ganglia and cerebral cortex. We have 
revised and expanded the atlas with more than 100 detailed subdivisions, and here present the first version the 
WHS rat brain atlas with brain-wide coverage. This atlas is a comprehensive open-access resource incorporated 
in the EBRAINS atlas services, and several analytic tools.

METHODS
Brain region delineations were manually defined using the ITK-SNAP software4 (version 3.8.0, 
http://www.itksnap.org/). The criteria for defining and delineating a brain structure were based on 
interpretation of the atlas MRI/DTI data set combined with spatially registered cyto-, chemo-, and 
myeloarchitecture data, other reference atlases, and literature.

RESULTS AND DISCUSSION
The Waxholm Space rat brain atlas v4 comprises an atlas reference MRI/DTI data set in which the Waxholm 
Space coordinate system is applied, and a whole-brain annotation set which is named and organized by
a hierarchical terminology (Fig.1). The atlas contains 222 brain structure delineations, including detailed and 
revised subdivisions of the cerebral cortex, striatopallidal region, midbrain dopaminergic system, and 
thalamus5. The atlas has been incorporated in tools for registration of images to atlases, planning spatial 
position of recording electrodes or viral expression, brain-wide analysis, search for data associated with specific 
brain regions, and visualization of brain atlases, regions and data points. The atlas provides a spatial framework 
for integration of the multifaceted neuroscience data shared via the EBRAINS platform (http://ebrains.eu) 
developed by the EU Human Brain Project. It is shared under a CC-BY-SA license via EBRAINS and the 
Neuroimaging Informatics Tools and Resources Clearinghouse (www.nitrc.org), and has been downloaded 
>11.000 times since its release on October 1, 2021. In summary, the Waxholm Space rat brain atlas is openly 
available, contains detailed brain structure delineations and has been incorporated in several tools. We 
therefore believe that the updated fourth version of the atlas is an important resource for efficient analysis and 
transparent reporting.

Figure 1: The Waxholm Space atlas of the Sprague Dawley rat brain v4, presented according to the atlas 
ontology model (AtOM)6.
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INTRODUCTION/MOTIVATION

Statistical inference for whole brain modelling is a recent breakthrough enabling personalized models for varied applications. 

The tractability of model inference has been limited so far by the computational scalability of the models for both 

forward computation but also backwards passes for gradient computation, required for variational and full Markov 

Chain Monte Carlo (MCMC) algorithms [1,2], while the need to increase spatial and temporal resolution has stretched 

available resources. In parallel, the deep learning community has built significant computational infrastructure for 

complex models, which can be repurposed for (a) the needs of personalized whole brain network modelling at high 

spatial and temporal resolutions [3] and (b) developing and deploying new inference techniques for wider EBRAINS 

community use.

METHODS

In this work we present an implementation of virtual brain modelling with significant feature parity with the widely used The 

Virtual Brain (TVB) simulator but builds on the JAX library for NumPy-style tensor computations [4] on both CPU and 

accelerators such as GPU and TPU; JAX transparently provides efficient autodifferentiation and just- in-time compiling, which 

enables use of flexible inference schemes. Extended with scalable, GPU friendly inference in mind, the new implementation 

adds techniques for high spatial and temporal resolution models. A TVB plugin allows users to reuse existing TVB models 

while smooths the transition to statistical modelling. The resulting library significantly simplifies use cases for HBP and 

EBRAINS users. The implementation is developed in the open (github.com/ins-amu/vbjax), easily installable, with an open-

source yet business-friendly license.

RESULTS AND DISCUSSION

Several use cases from TVB and HBP are presented ranging from rest state aging to virtual epilepsy patient use cases, and 

the resulting library is shown to support all use cases with similar or better performance. We additionally present 

for the first time full MCMC inference for a realistic neural field model applied to clinical epilepsy patient data. While 

the current aim of the library to cover existing use cases, we wish to use it as a test bed for developing further theory 

innovation on the structure of brain dynamics, as well as integrate with deep learning innovations in flexible 

parameterizations and approximations, allowing for significant acceleration of model inference.
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INTRODUCTION/MOTIVATION

Data recorded from intracereberal electroencephalography (iEEG) has been in use for several decades in the context of 

clinical epilepsy to assess in detail the origin of a patient’s seizures. Despite the high interest of the data for fundamental 

neuroscience research, the modality has never been employed at large scale in systematic ways. The new Human 

Intracerebral Platform resolves several technological issues in one platform, enabling participating clinics to work with their 

data without needed to manage installation of many cutting edge softwares. The majority of the softwares available enable 

important analyses of patient data, however none of them bring computational modelling techniques to the platform. 

The Virtual Brain is a software for efficient whole brain modelling, including network-mediated seizure propagation as 

frequently seen in clinical epilepsy [2]. We present an application, the HIP TVB app in short, to enable interested HIP users to 

discover their data through the lens of a computational model.

METHODS

The Virtual Brain is a software for whole brain network modelling which simulates realistic neuroimaging data using a 

patient specific connectome and cortical geometry, which are derived from a patient’s MRI scans. The HIP expects apps 

packaged as container images to be run securely on a HIP deployment. Our app packages TVB along with preprocessing tools 

like FreeSurfer, FSL & MRtrix3 into a single convenient container image including the JupyterLab Desktop GUI to enable full 

model-driven workflows for simulation and inference [1] on iEEG data.

RESULTS AND DISCUSSION

We use the HIP TVB app to preprocess and simulate seizures for the HIP demo datasets. The app along with this tutorial are 

available on the production HIP instance. While the current set of workflows is restricted, it will be extended in the future 

towards virtual resection and high resolution modelling workflows.
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The brain is a very complex, adaptive and multi-scale system. To better understanding is 
(dys)function, it required multiscale data acquisition which is possible nowadays with some 
technology like Opto-E-Dura[5]. The understanding of this new data require multiscale simulators. 
Previous brain knowledge and models at different scales can be used to understand this new data, 
but they need to be linked across scales, and the co-simulation is an option.
We present a framework of co-simulation that is applied to the study of brain dynamics for 
different dynamics of the CA1 in mouse brain. The neural circuit of the CA1 is modelled by a 
spiking neural network, implemented by Nest[2] which is one of the most efficient simulators for 
point neuron model. The macro-scopic model of the mouse brain is a network of neural masses 
connected through the connectome, which is derived using data from Allen Brain Institute[4]. The 
simulation here is performed using The Virtual Brain [6](TVB) which is one of the most efficient 
simulators at this level and it has already been used to model the macroscopic dynamics of the 
mouse brain[3].
The Nest-TVB co-simulation thus allows simulating the whole mouse brain with very detailed
CA1. In addition, the co-simulation used sensors model to simulate a recording signal at each scale 
(Local Field Potential using HybridLFPy[1] at the level of neurons, and ElectroCOrticoGraphy by a 
forward solution at the level brain regions). Unlike the recordings of state variables whihc have no 
meaning for the experimental neuroscientists, the simulated recordings can be directly compared 
with recording from real experiments allows validation of multiscale model.
The co-simulation framework is composed at least 2 simulators (Nest and TVB) which 
communicate with MPI and translation modules that translate the data from one scale to another 
as shown by the figure . These modules are composed of an interface for each simulator and a 
translation component in the middle. To estimate the additional time required by co-simulation 
and it’s limitations, the performance of the actual implementation of the framework was 
evaluated
on one computer and on a supercomputer.
This new framework is a new tool for research which works on the integration 
of data and models across scale.



Figure 1: High-level design of the co-simulation of TVB and Nest showing some of the important 
functional modules.

The plots in the four corners illustrate the type of information exchanged in respective information 
channels. The launcher in the middle starts and handles coordination of simulation parameters.
Middle top and bottom of panel B show the translators. These modules translate the mean firing 
rate information from TVB (module on the right) and spike times from Nest (module on the left).
Each population has a specific translator enabling transfer of information from the neurons in the 
brain regions and vice versa.



Figure 2: The virtual mouse brain experience
A Mouse brain of Allen Institute with the position of the 2 polytrode electrodes and 16 ECOG 
electrodes. The ECOG electrodes measure the neural field from the surface of the electrode in 
blue for left hemisphere and yellow for the right hemisphere. B Cross section of the mouse brain 
with the position of the left implemented electrode. C Position of the site layout of the polytrode 
(Neuronexus 32 models from MEAutility library). D The position of the probe inside the neural 
network. The red neurons are pyramidal neurons and the blue neurons are basket cells. E Similar 
figure than A but with transparent mesh. Blue spheres mark the centres of mouse brain regions 
and the red spheres a subset of neurons of the CA1. F Spatial representation of the connectome of 
the mouse brain. The blue dots are brain regions and the red ones are CA1 regions, whose 
neurons are simulated with NEST. The strongest anatomical connections are highlighted by the 
grey links. G The weights of the anatomical links in F are shown as an adjacency matrix. H The 
connection delays associated with F are shown as an adjacency matrix. The anatomical 
connections are extracted from tracer data of the Allen Institute.
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INTRODUCTION/MOTIVATION

Mazzoni et al. [1] have shown that patients with Parkinson’s disease (PD) can reach a predefined target with their upper 

limb as accurately as control subjects, but on average they select speeds that are lower than control ones, because of a 

greater sensitivity to the movement effort. Their results were in line with the theory of optimal control [2] which postulates 

that the brain generates trajectories by minimizing a behavioral cost function.

The objective of this work was to build a mechanistic computational model of the neural control exerted by the motor 

cortex (MC) and the basal ganglia (BG) for goal-directed movements of the upper limb, which may constitute an in silico 

framework to investigate the physiological and pathological reaching movement control. Leveraging the knowledge 

acquired with literature review [3], a “disease” version of the model was built to simulate the bradykinetic (i.e., 

abnormally slow) movements of PD patients.

METHODS

The motor controller was simulated as a fully-connected, continuous-time recurrent neural network of leaky integrator 

neurons, trained to send motor commands to a biomechanical model of the human upper limb [4] for reaching circular 

targets on a bidimensional workspace. The task was to reach the target as accurately and fast as possible and then 

hold

the final posture until a predefined time limit (𝑇𝑙𝑖𝑚).

We developed two instances of the model. In a first implementation, the control policy generated by the motor cortex 

(MC) was updated via optimization of an objective function l of the network parameters which is thought to be computed 

by the BG:

𝑙 =
𝑇𝑙𝑖𝑚

1 ∑ {𝛽 ||𝑦∗ − 𝑦 ||
2

[1 − exp (−𝑟   𝑖 𝑡 )] + 𝛼 ||𝑢 ||
2 

+ 𝛼 ||𝑧 | 2

𝑖 𝑇𝑙𝑖𝑚
1

𝑡=0
2(𝑊𝑖

2) 1 𝑡 2 𝑡 | }
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𝑖Where i is the current movement trial, 𝑦𝑡 the hand position at time t and 𝑦∗ the target center, Wi its width, r a constant. 

The exponential term presents a saturation at 1, as a motivational drive that is maintained during the movement until 

the vicinity of the target [5]. The second term is a neuromuscular cost, penalizing high neural 𝑧 and muscular activity 𝑢. 

α and β are hyper-parameters which regulate the relative importance given by the subject to accuracy and effort. 

We

modelled the PD condition as an imbalance between these hyper-parameters.

In the second implementation, we have incorporated a second network in loop with the cortical one, simulating the BG 

modulation of MC activity. At cortico-striatal synapses we introduced a multiplicative gain, which value was proportional 

directly to fixed dopamine level, and inversely to the index of difficulty of the task [6]. The PD condition was mimicked 

directly as decreased dopamine level.

RESULTS AND DISCUSSION

In the first implementation, we obtained straight reaching trajectories and bell-shaped velocity profiles, as experimentally 

observed [1] (fig. 1). We also obtained realistic multiphasic muscular activities, revealing synergies between shoulder 

and biarticular extensors in the acceleration phase, and shoulder and biarticular flexors in the deceleration phase. The 

shift in the hyper-parameters led to similar trajectories, but lower peak velocities and longer movement durations, 

mimicking PD bradykinesia [1]. In muscular activity, the first agonist burst was reduced, and a bigger level of coactivation 

was present in the deceleration phase, as experimentally observed [7]. Simulation results on the second model instance 

showed realistic velocity profiles and a reduced vigor of movement when the dopamine level was decreased, simulating 

the PD condition (fig.2).

With respect to previous studies [8], we conceived ours as a mechanistic model of reaching control in an infinite-horizon 

framework to predict the movement duration as an emergent feature of the optimization, given that the literature of 

interest concerned the distorted modulation of this variable in PD. Our model was able to handle scenarios of speed-

accuracy tradeoffs, with a task-related modulation of the effort and accuracy, reproducing recent experimental results 

on PD bradykinesia.

FIGURE 1 – Hand reaching trajectories (first column), hand velocity profiles (second and third columns), and muscular 

activations (last column), for a simulated “healthy” subject (first row) and for a simulated “PD” patient (second row), 

obtained with the first implementation. mshfl = monoarticular shoulder flexors; mshex = monoartic. shoulder extensors; 

melfl = monoartic. elbow flexors; melex = monoartic. elbow extensors; bfl = biarticular flexors; bex = biarticular 

extensors.



FIGURE 2 – Hand velocity profiles generated by the second implementation, for decreasing level of dopamine (Dopa). 

The neural model generates more realistic velocity profiles compared to a minimum jerk model. PD is simulated in the 

third column.
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INTRODUCTION/MOTIVATION

A key problem any sufficiently complex animal needs to solve when constructing a representation of the external world is to 

distinguish between self- and externally generated sensory signals. More precisely, the question is how the neural networks 

of sensory processing can learn to suppress irrelevant predictable outcomes such as the sound of one’s footsteps during 

walking, and when to process them such as when preparing to jump over a known gap occluded by a bush. Here, 

neuroscientific observations are informative, that extend the traditional understanding of primary visual cortex (V1) 

as a representational canvas of the world and provide experimental evidence showing a strong influence of motor-related 

signals on neurons in this area1–3. Indeed, some of these observed motor-correlates appear to be predictions about sensory 

outcomes resulting from egomotion1,2 and can be used to suppress irrelevant information for more efficient sensory 

processing4. Addressing the vague understanding of the underlying learning rules and neural circuits, we show that 

neuronal activity patterns suggestive of such predictive mechanism are readily explained by a Hebbian covariance learning 

rule between neurons in motor areas and mismatch neurons in V1. Out model thus provides a mechanism to address 

the computational challenge of identifying non-self-generated components in the visual input stream.

METHODS

A minimal circuit of mismatch computation. Based on the observations of 2, a minimal model of mismatch 

computation between visual input and predictions from motoric areas was constructed. As shown in Figure 1a,

the model circuit consists of three populations of neurons. The motor units shown in red control the speed of 

movement, linearly encoding it as a scalar value 𝑦𝑚 ∈ [0,1]. Direction-selective neurons shown in blue are sensitive 

to caudally moving patterns, and linearly reflect the speed of pattern motion. Thus their activity is given

as 𝑦𝑣 ∈ [0,1], with higher values corresponding to faster pattern motion. Mismatch neurons depicted as a square in Figure 1 

compute the difference between motor prediction and sensory input, the latter is scaled by a synaptic weight 𝑤. The firing 

rate 𝑒 of mismatch neurons is thus defined as

𝑒(𝑦𝑚 , 𝑦𝑣) = 𝜙(𝑦𝑚 − 𝑤 ⋅ 𝑦𝑣)
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with a rectified sigmoid as saturating activation function:

1
𝜙(𝑥) = max (0, 1 + 𝑒−𝑥)

Lastly, the learning rule adapting the synaptic weight is applied at every based on the covariance rule of 5 and given by:

Δ𝑤 = 𝛼 ⋅ (𝑒 − 𝑒̅) ⋅ 𝑦𝑣

with learning rate 𝛼 and temporally averaged mismatch signal 𝑒̅. The learning rule is applied at every simulation timestep.

Figure 1. The model is progressively extended from a minimal circuit of sensorimotor mismatch computation to retinotopic mismatch 

computation and mismatch-based action control. a) In primary visual cortex (V1), mismatch neurons compute the difference 𝑒 between the 

corollary discharge from motor neurons 𝑦𝑚 and activity of direction selective neuron 𝑦𝑣. The latter is

scaled by the synaptic weight 𝑤, that is trained in two conditions described in the main text and shown in b) for two different

initialization values (left plot: 0.01, right plot: 0.5). c) Extension of the model to retinotopic space through spatial arrangement of mismatch- 

and direction selective neurons. d) Retinotopic testing paradigm with local halt of optic flow (in the white square).

e) Connecting the mismatch neurons back to the respective motor units allows control of simple sensory-guided behavior. Here, two motor 

units control a shift of gaze direction to the left or right.

Coupled and non-coupled network training. We trained two identically initialized networks as shown in Figure 1a in different 

environments. For both, motor commands 𝑦𝑣 were randomly sampled from 𝑈(0,1) at each timestep. Network 1 received 

visual inputs contingent with this movement, i.e. backward-moving patterns when moving

forward and no input to motion selective visual neurons when standing still. In line with 2, we termed this condition in which 

𝑦𝑣 = 𝑦𝑚 CT (coupled training). The second network received non-contingent visual input (thus labelled

NT), with both 𝑦𝑣 and 𝑦𝑚 sampled independently from 𝑈(0,1). Figure 1b shows the evolution of weights for both

CT (blue) and NT networks (orange) across training time for two weight initialization values. The learning rule drove



the weight close to the correlation value of the centered visual and motor neuron responses, yielding low values close to 

zero in the uncorrelated NT condition and high values close to one in the CT condition.

Extension to retinotopic space. According to the measurements of 1, mismatch responses in mouse V1 are 

retinotopically organized, allowing the animal to precisely locate, and thus react to, the position of non-self- 

generated motion. The model from Figure 1a is thus extended by multiplying visually tuned neurons and distributing 

them across retinotopic space, along with the one-to-one connected mismatch neuron (Figure 1c) and trained weights of the 

CT network. Note that the (global) movement state remains one-dimensionally encoded.

RESULTS AND DISCUSSION

Experience-dependent mismatch responses. Attinger et al. 2 were able to elucidate mismatch in mouse V1 responses 

during the recording phase by artificially halting optic flow in the VR setup shown in Figure 2a while the mouse was running. 

In Figure 2, this is termed the mismatch condition. In the playback halt co ndition, the still standing mouse observed a 

moving visual input that then suddenly stopped. We tested both the CT and NT model

(non-retinotopic) described above in the same conditions (Figure 2b) and found a good match to the Ca2+

responses from 2 that are shown in Figure 2c. Specifically, the strong response to the mismatch condition also only in the CT-

trained model, just as experiments found it to be present only in CT-trained mice. Lastly, after being exposed to the CT 

training paradigm for another 2000 timesteps, the NT model was tested again and now showed an increase in mismatch 

neuron activity in the mismatch paradigm (Figure 2d). This, too, is in good agreement with the study of Attinger et al., 

who found the same recovery pattern in mice, leaving our model as a viable candidate for the underlying learning 

mechanism.

Figure 2. The model reproduces various patterns of experimentally observed mismatch selectivity in mouse V1. a) The experimental 

VR setup of Attinger et al. 2 allows to raise mice with different types of visual experience. In the CT condition, visual feedback follows running 

speed on the treadmill. In the NT condition, visual feedback is uncorrelated. b) Response of mismatch



neurons in the trained models from Figure 1b to the mismatch and playback halt conditions described in the main text. c) Neural responses 

measured by Attinger et al. 2. d-e) Exposure to the CT paradigm restores mismatch responses in model (d) and mouse

(e). Panels a, c and e are reproduced from Attinger, Wang and Keller (2017), Cell, Cell Press.

Spatially tuned mismatch computation. As the nature of motor-correlated feedback to visual areas is a topic of intense 

discussion, a key factor is the dimensionality of the signals. Zmarz and Keller 1 showed that the information about expected 

visual flow that is passed on to V1 is retinotopically organized and thus may serve to identify the precise position of 

externally generated stimulus causes, such as an approaching predator. We tested the retinotopic model introduced 

in Figure 1c in such a predator-spotting setting, in which part of a visual input stream, moving in accordance with motor 

neuron activity was perturbed by halting it still, simulating independent motion of an external object. This area, marked by a 

white square on the right of Figure 1c, indeed elucidated a detectable mismatch pattern shown on the right that is readily 

decodable for downstream areas such as the selection of the appropriate behavioral response. Our model thus 

provides a simple, but effective neural mechanism in to disentangle self-generated from externally caused changes in 

visual inputs.

Mismatch-based action control. The connection from motor to sensory areas investigated above does not need to be 

unidirectional. By using feedback from mismatch neurons to motor neurons, sensory-guided behavior can be elicited from 

an extended version of our model. This is shown in Figure 1e, where an ant moving to the left is observed. In V1, this elicits 

activity in direction-selective cells tuned to the respective direction (shown in blue). The consequently activated mismatch 

neuron (square), putatively situated in supragranular layers, then activates the motor neuron encoding the motor program 

for shifting the gaze leftwards. As the gaze shift (blue arrow in the lower panel), the perceived optic flow of the moving and 

it reduced, thus closing the control loop that minimizes the mismatch response. In combination with the putative 

arrangement of the circuit in the cortical layers as hinted at in Figure 1e, this fits well with experimentally observed tuning of 

neurons in supragranular layers in mouse V1 that were tuned to the direction of saccadic eye movements, but not to direction 

of motion of visual signals 6. To conclude, the experience-dependent comparison of corollary discharge signals from motor 

areas with responses of visual neurons is a promising candidate for the challenge of identifying non-trivial components in 

the visual input stream and fits well into larger and more complex circuits for visually guided behavior.

Keywords: predictive processing, self-supervised learning, unsupervised learning, vision, feedback, sensorimotor, motor 

control, neural networks, computational model
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INTRODUCTION/MOTIVATION
The local cortical network plays a crucial role in brain function. The relationship between its structure and 
activity is not yet fully understood, but large scale spiking columnar models can help reveal the correlation 
between the network's cell-specific structure and neuronal activity. Using existing experimental data, 
we built a spiking network model of the cortical column microcircuit including biological realistic details 
such as cell-type specific densities and the presence of AMPA, GABA and NMDA receptors. The model was 
composed of multiple layers in which different type of neurons are included: in each layer 3 inhibitory 
neurons populations (PV, SST, and VIP) and one excitatory populations are present.

The models of the cortical column proposed so far in literature (for example [1]) have taken into account 
only static weights between neurons. However, we know that plasticity is an ongoing process in the brain. For 
this reason, in the second part of our study we introduced plastic weights using the STDP rule to uncover the 
effects of stimulus-driven plasticity in the complex spatio-temporal patterns of neuronal activity within the 
column.

METHODS

All neurons in the model are described by leaky integrate-and-fire neurons.

Each neurons includes dynamics of different postsynaptic receptors (AMPA, GABA, NMDA) with exact equations. 
The network model is composed by 4 cortical layers each containing pyramidal neurons, PV, SST and VIP cells 
(layer 2/3, 4, 5, 6). The model has biological realistic constrains: the percentages of neurons in each group and 
the structural parameters of our multi-laminar column, that is, the connectivity strength and 
probability of connections between populations are derived from experimental data [2]. This 
modeling approach minimize the arbitrary choice of parameters and avoids any fitting or tuning of the 
activity of neurons. The parameters for each neuron type (refractory period, membrane resting potential, 
membrane threshold, capacitance of the membrane) are also constrained using experimental data.

mailto:g.moreni@uva.nl


Figure 1. Model definition. In layers 2/3, 4, 5, and 6 excitatory population (red triangles) and 3 types 
of inhibitory populations (PV, SST, VIP as blue, green, orange circles respectively) of model neurons 
are present. In layer 1 only VIP cells are present. The percentage of neurons in each population is 
reported in Table 1, the size of the circles in the figure represents the relative size of the inhibitory 
populations. Input to the populations is represented by external background noise to all populations. 
Connections between groups are not explicitly shown in the cortical column figure, populations are 
all to all connected according to the probability matrix P. On the right the connection diagram for 
one layer is shown. Each neuron has 3 types of receptors, AMPA and NMDA for excitatory inputs and 
GABA for inhibitory inputs. The connection matrix shown is computed as the number of connections 
between two populations times the strength of each connections.

RESULTS AND DISCUSSION
Our study is divided in two parts and is structured as follows.
In the first part, we built the cortical column model with static weights derived from experimental data 
[2], and we analyze the spontaneous activity, the stimulus evoked response patterns. We were able to match 
the simulations with experimental recordings both in spontaneous and in evoked case (Fig. 3).



Figure 3: Simulated evoked cell-type specific activity. (A) Raster plot of spiking activity 
recorded for 1500 ms of biological time showing the response of neurons after  an  
input  current  (30pA)  is  given  to  E4  at  700  ms.  There  is  a  propagation of  activity  
through  all  the  column,  all  the  groups  have  an  increase  in  their number  of  spikes.  
Layers  2/3,  4,  5,  and  6  are  shown  (from  top  to  bottom; red:  excitatory,  blue:  
PV,  green:  SST,  yellow:  VIP).  Number  of  displayed spike trains corresponds to the 
number of neurons in the network (total of 5000 shown).  (B)  Firing  rates  traces  
showing  the  increase  of  the  overall  activity  when the  input  current  is  injected  in  E4.  
Computed  with  a  sliding  window  of  200ms and a time step of 1ms. (C) Mean firing 
rates for each population in comparison with  experimental  mean  firing  rates  (dashed  
bars).  Error  bars  for  experimental data are not depicted and are available in Figure 
3 of [2]. (D) Propagation order of the input in the column. From layer 4 the input 
goes to E2/3 then E5 and finally to E6.

We then studied the response of all the neurons groups in relation to a external stimulation of one target 
group. We looked at their response both in the spontaneous case (only background noise present) and in 
the evoked case (background noise + input to layer 4). Depending on the state of the network (spontaneous 
or evoked) the response of the neurons caused by the same external stimulation can differ. Lastly, we 
studied the effect of Feed forward (FF) input, i.e. input to layer 4, combined with a Feedback (FB) input, i.e. 
input targeting layer 5, and we shown they have opposite effects.

In the second part we introduce plasticity to the model, the weights are no longer fixed but are allowed 
to change according to STDP rule.
In the presence of a constant input to layer 4 plasticity give rise to oscillations in the low gamma range (22 Hz).

Once the model is "trained", i.e. after a phase in which the weights were allowed to change, we fixed the 
weights again and we studied the behavior of neurons in the model. We show for instance that a stronger 
input to layer 4 leads to the rise of faster oscillations whereas removing completely the input causes the 
oscillations to disappear and the neurons to fire again at their basal firing rates.



In the presence of constant Feed forward (FF) input, where the network shows a presence of 
oscillations, we studied the effect of varying Feedback (FB) input. FB is able to modulate the frequency of the 
oscillations: a strong FB input drastically reduce the presence of oscillations.

We then studied the origin of the oscillations and which layers are required to have plastic weights to allow 
the oscillations to appear. Layer 4 is found to be the candidate: plasticity in L4 is crucial for oscillations 
whereas in the other layers the plasticity can be turned off without major effects on oscillations.
In the last part we studied the role of the different interneurons on oscillations and identify the most relevant 
ones. Oscillations is found to be a collective property, all interneurons contribute to it. However, 
according to our model PV seems to be the most important interneuron type involved in oscillations.

In conclusion, the role of FB and FF input, the study of oscillations in the model and the role of the different 
interneurons gives us insight on the dynamical properties of the cortical micro-circuitry.

Keywords: cortical microcircuit, layered network, specificity of connections, interneurons, Feedback & Feed 
forward input, plasticity, STDP, oscillations, interneurons’s role in oscillations.
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INTRODUCTION/MOTIVATION

Dopamine plays an important role in mediating spatial learning and memory. The firing patterns of stellate cells in layer II of 

medial entorhinal cortex are also involved in memory, cognition, and perception [1]. These patterns are largely modulated 

by the underlying subcellular calcium dynamics within the axon initial segment (AIS) [2]. Recent experimental data have 

suggested a putative coupling between dopamine D2 receptors (D2R) and T-type Ca2+ channels as another biophysical 

explanation for the firing pattern modulation [3]. This computational study aims to enhance our understanding of the 

subcellular membrane mechanisms within AIS of the layer II stellate cells and their modulating effects on resting membrane 

potential (RMP) and action potential (AP) plasticity in pathological conditions.

METHODS

The schematic Figure 1 illustrates the G protein coupled receptor (GPCR) pathway between the D2R and T-type Ca2+ channel. 

The computational model is established in three folds. First, the biophysical parameters for various ion channels in the AIS 

region of layer II stellate cells were combined and adapted from previous models and experimental studies. Second, we 

developed equations for the GPCR pathway to alter the cAMP concentration, which was merged with the maximum 

conductance of T type Ca2+ channels in a modified Boltzmann equation. Third, various pharmacological agents are simulated 

to explore new biological insights from our model. Using the NEURON software platform in a single compartmental isolated 

cell, the RMP, APs and T-type Ca2+ channel currents were simulated by utilizing both current clamp (current ramp and current 

step) and voltage clamp protocols.

Figure 1: The GPCR pathway between D2R and T-type Ca2+ channel
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RESULTS AND DISCUSSION

The dopamine agonist bromocriptine (bromo) of 10 µM is mimicked to investigate the altered internal kinetics of the T- type 

Ca2+ channel. Then the APs are evoked from the whole cell model. Figure 2 (a) illustrates the modulating effects of bromo on 

the steady- state activation and inactivation curves of the T-type Ca2+ channel. It shows approximately zero effects on 

the steady- state inactivation curve, but a positive shift on the steady- state activation curve (black solid line). As a 

result, the half activation potential of the T-type Ca2+ channel is shifted from –36 mV to –32 mV. Figure 2 (B) demonstrates 

the effects of dopamine agonist on the simulated AP generation with a current injection of 400 pA for a duration of 1 s. It 

clearly indicates the reduced AP frequency (black solid line) under the effects of dopamine agonist. The window current 

to maintain the RMP was reduced due to activation of D2R receptors and it was counter balanced by decreasing the A-type 

K+ channel conductance. This in silico study suggests that the application of cAMP antagonists and K+ channel agonists could 

be used to replace dopamine in certain pathological conditions and in studies of spatial memory performance.

Figure 2: Modulating effects of dopamine agonist bromocriptine on the kinetics of T- type Ca2+ channel (A) and action 

potential generation (B)

Keywords: Layer II Stellate cells, Dopamine receptor, T-type Ca2+ channel, Computational model, Action Potential
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INTRODUCTION/MOTIVATION

Backpropagation as a method for training artificial neural networks has a long history of successful applications [1, 2]. Due 

to its biological implausibility, various learning rules and network architectures were suggested that approximate 

backpropagation while adhering to biological principles.

Sacramento et al. showed that an approximation to backpropagation can be achieved using a simplified multi-

compartment model of cortical pyramidal neurons in combination with a local inhibitory circuit [3]. A rate-based 

network was able to learn a variety of supervised learning tasks by encoding feedback errors in the apical pyramidal 

compartment.

In our work, we apply this approach to a network of deterministic spiking neurons with threshold dynamics. While it was 

previously shown that networks of rate neurons or rate-based Poisson spiking neurons can approximate backpropagation 

[4, 5, 3], our model is, to our knowledge, the first bio-inspired backpropagation model using deterministic threshold-based 

spiking neurons without separate learning phases.

METHODS

In Fig. 1a, the architecture of each layer in the network is shown, consisting of a pyramidal population (P) and an 

interneuron population (I), which are recurrently connected. The voltages in the populations of the k-th layer are 

represented as vectors and  with dynamics given by

.

A voltage reset is triggered if . The spike population vectors contain the 

corresponding spike events as delta pulses given by . Note that the feedback matrix

was always set to a one-to-one connection matrix.
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Plasticity in this setup was present in all except matrices except for and , with the latter 

group being randomly initialised. The plasticity rules were given by

,

where ⊗ denotes the outer product. The variables are exponentially filtered version of the spike trains. Crucially, 

the presented learning rules are computationally efficient as updates on individual weights only need to be invoked if a 

presynaptic spike event occurs.

RESULTS

The network was implemented using the GeNN simulator [6], allowing us to efficiently run the full network on a GPU. We 

trained a three-layer network with layer dimensions 30-50-10, see Fig. 1b, on a supervised learning task where pairs of inputs 

and target output samples were randomly generated using an additional three-layer teacher network of the same size. The 

output targets induced a current in the apical voltage of the output layer given by

. Only the hidden layer contained an inhibitory population.

Fig. 1c and 1d show the resulting mean square loss in the output layer during training and the resulting output prediction 

of the network. Since estimating the rate required low pass filtering the output spike trains, a certain delay can be observed 

between the target rates and the resulting output. Therefore, the loss for a given sample was determined as the square 

error of the rate estimate and the target after the network and the firing rate estimate had reached a stationary state. 

The network successfully learned to reproduce the desired output rates. To demonstrate that changes in the weights to the 

hidden units indeed contribute to reducing the error, we also trained the network with plasticity only being active at the 

readout weights, which led to an increased loss as shown in Fig. 1c.



DISCUSSION

On a computational level, spiking neural networks can be considered a double-edged sword: Increased efficiency in running 

SNNs on dedicated neuromorphic hardware goes along with less efficient training methods. A common method for training 

SNNs that encode information via spike rates is to train a conventional artificial neural network on the same task and 

transfer the resulting weights onto the spiking system [7]. The presented model is a step towards bridging the gap 

between learning methods and inference in spiking networks. Therefore, potential use cases could include spiking 

networks that continuously learn while processing sensory information. To that end, future research should also 

investigate the capabilities of the proposed model in unsupervised setups, where no additional training input is 

presented to the output layer.

Keywords: Spiking Neural Networks, Backpropagation, Pyramidal Neurons, Dendritic Compartments, GeNN 
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INTRODUCTION/MOTIVATION

Models in neuroscience have a high number of degrees of freedom. Often only specific parameter 
regions are of interest, which emphasizes the need of developing tools to efficiently find these regions 
and advance brain research. In computational neuroscience techniques to explore high dimensional 
spaces have been used more frequently. In addition, high performance computing (HPC) can provide an 
infrastructure to efficiently run these computational heavy exploration methods to increase our general 
understand of the model behavior within reasonable times. In this work we present the parameter 
optimization of different neuroscientific models at different scales with the framework L2L.
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METHODS

Figure 1: The two loop structure of 
learning to learn. In the inner loop a 
model can be trained or simulated on a 
task from a family of tasks. A task 
specific fitness function evaluates the 
performance. The outer loop optimizes 
the parameters of the inner loop model.

Learning to learn or meta- 
learning is a well-known concept in machine learning (ML) [1]. It is a specific method to improve 
learning performance by optimizing hyper-parameter and parameters of the model. The concept is 
divided into a two loop optimization process as depicted in Figure 1. The optimizee,
i.e. the optimization target, in the inner loop can consist of any program such as an artificial neural 
network, a spiking network, a single cell model, or a whole brain simulation. This program is trained or 
just simulated on a task from a family of tasks. A fitness function, designed specifically for the task, 
assesses the performance. The (hyper-)parameters of the model and the fitness value are sent to the 
outer loop optimizer, which adapts the parameters using population based decision algorithms such as 
evolutionary algorithms or filtering techniques.

Here we present L2L [2] as an easy to use framework to perform parameter and hyper- parameter 
explorations of different neuroscience models utilizing HPC systems. L2L implements the learning to 
learn concept as an open source framework written in Python. The flexibility of the framework allows to 
deploy multiple simulations or model instances in a parallel fashion on HPCs.

RESULTS AND DISCUSSION

We highlight a variety of neuroscience models being optimized within the L2L framework. The different 
types of tasks shown in this work, illustrate the concept of reproducing empirical data or the learning 
process to solve a complex problem in dynamic environments. Our simulations range from single cell to 
the whole brain and use a variety of simulation engines such as NEST [3], Arbor [4], TVB [5], and 
NetLogo [6].

Keywords: simulation, meta learning, hyper-parameter optimization, high performance computing, 
connectivity generation, parameter exploration
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INTRODUCTION/MOTIVATION

Recent developments in the neuroscience of motivation have identified the main neural circuits at the 

interface between physiological needs and behavioural decision making [1]. On the one hand, different 

hypothalamic circuits interface with the internal millieu in order to encode physiological signals in the 

activity of neurons. On the other hand, the output of such circuits use neuromodulators like dopamie 

to influence action selection in downstream areas like the striatum. Among the involved regions, the 

Lateral Hypothalamus (LH) stands out as a hub that combine signals from all over the mammalian brain 

along the physiological state to drive the dopaminergic neurons in the Ventral Tegmental Area (VTA) 

and basal ganglia [2, 5].

In this work we propose a layered cognitive architecture that leverages such circuits to drive 

exploration and exploitation in a robotic model of hippocampal replay[3]. In previous work we have 

already showed that such an architecture possess dynamical properties that allow for behavioural 

switching that satisfies competing needs. This work shows how the brain implements these ideas 

following the layered architecture paradigm [4] to drive navigation and learning.

METHODS

The hypothalamic circuit is implemented with rate neurons in three different layers. The ventricular 

layer is composed of independent homeostatic circuits that drive independent signals towards variable 

set points. The intermediate layer is composed of an I-E balanced network that performs the 

behavioural switching at the LH level and the exploration-exploitation switch at the level of the Nucleus 

accumbens. Finally, the monoaminergic layer performs the dopaminergic modulation.

mailto:a.jimenez-rodriguez@sheffield.ac.uk
mailto:a.jimenez-rodriguez@sheffield.ac.uk


Figure 1: Hypothalamic layered architecture for motivational control

RESULTS AND DISCUSSION

We test our model in a previously published robotic implementation of the Morris Water maze [3]. In such a model, we augment 

a policy gradient rule with the motivational neuromodulation to satisfy different needs (Figure 2). We show that the motivational 

state of the agent successfully drive learning and exploration under different conditions. Additionally, we illustrate how the properties 

of the balanced network of the LH reproduce different aspects of the dopamine signal.

This work is an important step forward in integrating motivational dynamics into functional architectures in robots. 

Additionally, it provides computational testable hypothesis about the grounding of value and reward in reinforcement learning 

tasks using principles of homeostasis and energy balance.



Figure 2: Hippocampal replay implementation with MiRo

Keywords: Dopamine, Hypothalamus, Motivation, Self-regulation, Navigation
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INTRODUCTION/MOTIVATION

The structural lesions, typical of Multiple Sclerosis, are a consequence of the damage of the myelin sheath in the central 
nervous system. However, the lesion load is only a poor predictor of clinical disability [1]. In this paper, we hypothesize that 
the overall slowing of conduction velocities (i.e., across all brain tracts) is a better predictor of clinical disability as 
compared to structural damage. However, conduction velocities are typically measured on selected white-matter tracts 
(e.g., visual evoked potentials), which do not directly relate to clinical impairment. In fact, estimating conduction velocities 
across the whole brain has not been possible so far.

METHODS

To overcome this obstacle, we estimated patient-specific conduction velocities in MS patients by merging multimodal 
data (i.e., DTI and source-reconstructed magnetoencephalography) to inform large-scale brain models [2,3], fitted on each 
individual patient. We started from the known reduction of the power of the alpha frequency band, as well as the shift in its 
peak, observed in MS patients. We then reproduced these individual spectral features in silico using large-scale models 
based on the individual connectomes. We then used state-of-the-art deep neural networks for Bayesian model inversion to 
estimate the most likely average conduction velocity in each patient, given the observed spectral features (and the 
connectomes). To this end, we used Bayesian inference for model inversion, which is a principled method for updating 
beliefs with the information provided by the observed data (new evidence) to quantify uncertainty over hidden variables 
[4,5]. See Fig. 1 for an overview. For the present manuscript a key goal would be to infer patient specific average 
conduction velocities as the parameter that modulates power spectra in the alpha frequency band. To this end, we used 
simulation-based- inference (SBI) to estimate the conduction velocities (and a scaling parameter) over the patient's 
structural information, with the aid of only forward simulations. Finally, we used the inferred conduction velocities to predict 
the individual clinical disability.>
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RESULTS AND DISCUSSION

MS patients displayed significantly attenuated peak alpha amplitudes as compared to controls (p < 0.01). Furthermore, 
the total power in the alpha band, measured as the area under the PSD curve between 8-13 Hz, was significantly lower in MS 
patients (p = 0.02). With respect to the parameter inference, we estimated the posterior distributions over the whole-brain 
model parameters (the global coupling strength G, and the velocity V), by using SBI against the empirical PSD, pooled over 
the control and the patient groups. The posterior distribution of parameter G, which scales the structural connectivity of 
subjects, demonstrated non-significant changes (p-value
= 0.87), whereas the posterior distribution of averaged velocities V significantly decreased (p-value <0.01) in MS patients as 
compared to the control group (see Fig. 2). Finally, we built a multilinear model to predict clinical disability as measured 
by the EDSS scale. Gender, age, education level, disease duration and lesion load (i.e., the total volume of lesions), and the 
inferred conduction velocities were considered as predictors. We found that the model performs well at predicting 
individual disability (R2 = 0.595, Adjusted R2 = 0.41). Adding the inferred velocities to the model significantly improves 
the predictive power over the EDSS (p=0.028). To test for the generalizability of our model, we used a leave-one-out 
cross validation (LOOCV) scheme. Again, adding the estimated speed to the model significantly improved the predictive 
power (p=0.0417). Our results suggest a biologically and physically plausible solution to the “clinico-radiological” paradox, 
where the inferred, individual changes in conduction velocities across the whole networks are proposed as causative to the 
clinical disability in multiple sclerosis patients. Furthermore, this new pipeline merges multimodal imaging, large-scale brain 
models and machine learning in a Neurologically-coherent fashion, providing a new way to investigate large-scale 
communication of the brain mechanistically.

Keywords: <Multiple sclerosis>, <brain networks>, <conduction delays>, <tractography>, <brain networks>, <brain 

modelling>, <Bayesian inference>, <virtual patient>.
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Fig.1: overview of the pipeline.



Fig. 2. Main results.
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INTRODUCTION
The localization of the epileptogenic network from the analysis of interictal activity is still an 
open issue for patients with pharmacoresistant epilepsy. Compared with seizure events, 
interictal activity is also observable with both invasive (stereoelectroencephalography, SEEG) 
and non-invasive (magnetoencephalography, MEG) techniques, but is usually much easier to 
record. In this study, we build a whole brain network model personalized with patient specific 
data to predict spatio-temporal dynamics of interictal spikes.

METHODS
First, we simulated interictal spikes for a single node of the network with Epileptor, a 
phenomenological neuronal model of epileptic activity (Jirsa et al., 2014). For a single 
Epileptor model, the generation of spikes depends on the level of noise of the stochastic 
integrator used to compute the dynamics of the model. Then, we built and simulated a high 
spatial resolution neural field model composed of 20484 cortical (and 18 subcortical) nodes 
(Proix et al., 2018). This model embeds long-range and short-range structural connectivity, and 
accounts for complex spatio-temporal dynamics observed in epilepsy. Finally, we mapped the 
simulated brain activity to both SEEG and MEG measurements.

RESULTS
For whole brain network modelling, short-range coupling is essential to recruit a sufficient 
number of nodes and to trigger the emergence of a significant interictal activity which then 
propagates through the network. Importantly, this activity is also observable in simultaneous 
SEEG and MEG synthetic data, with specific spatio-temporal patterns. We built personalized 
whole brain network for 10 patients and showed that the simulated SEEG and MEG signals 
had similar spatio-temporal patterns as empirical SEEG and MEG observations.

DISCUSSION
This work demonstrates the modelling of spatio-temporal dynamics of interictal spikes for 
individualized patients. It brings opportunities to better understand the relationships 
between interictal and ictal discharges using invasive but also non-invasive measurements. 
Finally, the multimodal dataset of this study is made available to the community.

Keywords : Epileptogenic network, interictal spikes, stereoelectroencephalography, 
magnetoencephalography, Virtual Epileptic Patient
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Figure 1 : Without local connectivity, spikes are generated randomly. Adding local 
connectivity induces a spatio-temporal synchronization of local dynamics and results in 
the
emergence of a significant spiking activity.

Figure 2 : Simulated brain activity is projected to SEEG and MEG modalities with respect to 
the specific forward solution and spiking activity is observable in both invasive SEEG and
non-invasive MEG measurements.
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INTRODUCTION/MOTIVATION

Fluctuations of brain activity at rest display correlations between areas involved in task conditions, and their temporal 

variability possesses functional significance. However, our understanding of the mechanisms underlying these spatio-

temporal patterns is still incomplete. Here we address the main empirical signatures of brain resting state data: bistability of 

single region activation, low-dimensionality of the global system dynamics, multistability of recurrent coactivation 

patterns,and their non-trivial temporal dynamics. These constitute the key features of what we describe as structured 

flows on manifolds (SFMs) [1,2].

METHODS

We construct a whole brain network model [3] using 2D neural mass model [4] driven by noise to govern the regional 

dynamics coupled with a DTI-derived connectome from the Human Connectome Project in the Desikan- Killiany parcellation, 

and equip it with BOLD observer model [5]. From the simulated 10 minutes of noise-driven spontaneous activity we extract 

time-averaged time series of the state variables of the model (1kHz sampling rate), and the BOLD signal (~0.5 Hz).

First we employ systematic parameter exploration for global coupling scaling factor G and the noise variance σ. For each 

combination of the two parameters we evaluate the dynamical functional connectivity of the BOLD signal (dFC, correlation 

between windowed) in terms of its fluidity (variance of the upper triangle), and the dimensionality of the dynamics 

of the model by computing the variance accounted for (VAF) of the PCA applied to the time series of the state variables of 

the model. Result of this step provides a working point where the dFC is similar to the empirical data [6].

Additionally, having access to the generating model, we analyse in detail the fixed point skeleton of the networked model 

and show how the low dimensional manifold and the associated structured flow using linear stability analysis.
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Second, we strive to map the attractive manifold of the spontaneous dynamics in the space of the state variables of the 

system in this working point of the fluid dFC. For this we first compute the edge time-series (dot-product of the z-scored 

BOLD [7]), apply k-means clustering to separate similar co-activations, and then locate the corresponding time points 

on the low-dimensional embedding (PCA) of the state variable time-series.

RESULTS AND DISCUSSION

We have observed that the dimensionality of the system state space dynamics reduces for the same intermediate values of 

G where the main dynamical signatures of the resting state are captured, whereas the decoupled or over-connected 

system lacks the recurrence in time and exhibits high-dimensional dynamics.

In the working point, we then link the low-dimensional manifold subspaces with the clusters of the dynamic functional 

connectivity. We find that the structured flow is composed of fluctuation of the system on a slow time- scale between global 

states of high- and low-activity, and in the subspace of high activity undergoes the high- amplitude co-fluctuations [7]. In 

addition, applying a convolution kernel similar to the BOLD observer model (in the time width) to the state variables in 

the low-dimensional projection results to clearer separation of the occupied subspaces, which is consistent with the 

expected loss of information due to relative slowness of the BOLD compared to the neuronal activity.

These results underscore the central role that the structural connectome plays in the symmetry breaking that shapes 

the manifold and the resulting structured flow which describes the resting state brain dynamics. All in all, we show in-silico 

the potential of SFMs formalism as a prime candidate to make current semi-formal descriptions using a variety of 

mathematical concepts such as attractor landscapes [8] explicit.
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INTRODUCTION

Brain modeling is opening new frontiers for clinical applications and requires specific multiscale strategies. Mean- field (MF) 

models are a mesoscale formalisms summarizing the interaction of a neuronal population with the mean-field 

generated by the others1, providing a statistical approximation that bridges the gap between the underlying microscale 

effects and macroscale recordings2. Isocortical MFs have been integrated in simulators such as The Virtual Brain (TVB)3. An 

effective MF model is now much needed for the cerebellum , given its specific structure that can hardly be accounted for 

by ordinary neural masses and MFs elaborated for the isocortex 4. We present here the first model of the cerebellum, based 

on its realistic multi-layer structure including Granule Cells (GrC), Golgi Cells (GoC), Molecular Layer Interneurons (MLI), and 

Purkinje Cells (PC). The cerebellar MF was optimized using parameters taken from experimental recordings and was 

validated against a realistic spiking neural network(SNN) of the cerebellum. The integration of this MF into TVB and its 

connection with cortical MFs would contribute to the development of advanced brain digital twins toward personalized 

medicine.

METHODS

The pipeline for implementing a multi-layer MF model is presented (Fig1A) for the specific case of the cerebellum, considering 

its multi-layer microcircuitry already implemented in a cerebellar SNN (Fig1B)5. A Transfer Function

(F) formalism transferred neuronal biophysical properties into MF equations6. For each neuronal population, an analytical F 

(FPC,FMLI,FGrC,FGoC) was fitted to the SNN output including connection probabilities, synaptic decay times
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and quantal conductances (K,τ,Q)(Fig1C)7. The MF time constant (T) that regulates system global dynamics was optimized on 

Local Field Potentials (LFP) recorded from the granular layer (GrC and GoC) of mice cerebellar slices. The MF was validated 

against the SNN simulating the responses to composite inputs from intra-cerebral and sensory systems8. To investigate the 

MF predictive capability, inhibition control and PC learning were explored by tuning FPC inputs (MLI-PC and GrC-PC, 

respectively)9. This allowed us to monitoring PC modulation of specific patterns like burst-and-pause and the impact of 

different levels of Long-Term Depression/Potentiation at the synapses between GrCs and PCs. Area Under Curve (AUC) and 

peak were reported. PC pause depth was computed for MLI-PC case.

RESULTS AND DISCUSSION

MF activities with an optimal T=3.5ms (MF-LFP Mean Absolute Error=3%) resulted comparable with SNN simulation 

(Fig2A). Simulations exploring GrC-PC plasticity revealed an AUC linear trend and a peak sigmoidal trend with increasing synaptic 

strength (Fig2B1). The inhibition control on PC resulted in AUC and peak exponential decay with increasing MLI-PC synaptic 

strength and a pause depth sigmoidal trend (Fig2B2).

The first complete cerebellar MF was developed with high fidelity to approximate the real biological multi-layer network, 

with optimal T reflecting the speed of cerebellar dynamics (these are faster compared to the isocortical activity). MF 

equations reproduced cerebellar oscillations and signal propagation matching the SNN activity in response to cortical 

input patterns and predicted the modulation of PCs firing depending on cortical plasticity, which drives learning in 

associative tasks, and feedforward inhibition level. FPC tuning predicted how cerebellar complex synaptic mechanisms 

impact on the activity underlying motor control and learning. Parameters tuning might pave the way for further 

manipulation to remap physiological and/or pathological features onto the MF. Once integrated into TVB, the connection 

of the cerebellar MF with MFs specific for basal-ganglia-thalamocortical loop would remarkably improve the brain dynamics 

simulation10, allowing to compare dysfunctional oscillations with physiological activity anticipating the clinical impact of 

brain digital twin.

Keywords: mean-field; transfer function; brain modelling; multiscale modelling; cerebellum; digital twin



Figure 1) A) Pipeline to develop and optimize a multi-layer mean-field (MF). B) Spiking Neural Network (SNN) was used as 
a structural and functional template to build up the architecture of the multi-layer interwire cerebellar MF 
network. For each pre-synaptic connection, presynaptic parameters (connection probability K, synaptic conductance Q 
and time constant τ) were extracted based on SNN. C) Population-specific TFs are fitted on the numerical template 
computed with SNN using physiological working frequencies of each presynaptic connection. Semi-analytical TFs 
captures the differences in input/output relation determined by the population- specific biophysical features. (e.g, 
sigmoidal for molecular layer interneuron and almost linear for PC)



Figure 2) Validation. A1 & A2) Mean-field (MF) predictions (lines) for cortical-like input overlap the validated Spiking 
Neural Network (SNN - histogram). MF output (PC activity) is within SNN output (boxplots). B1) Inhibition control (wMLI-PC 
tuning, hypo to hyper inhibition) leads to nonlinear changes in PC activity quantified as Area Under Curve (AUC) and burst-
pause dynamics (peak-pause). B2) PC learning (wGrC-PC tuning, Long-Term depression to potentiation) shows AUC linear 
increase and peak sigmoidal trend.
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Abstract

Whole-brain network modeling combines personalized anatomical information with dynamical models of brain 

activity to generate spatio-temporal patterns as observed in brain imaging signals. This approach allows for the 

inference and prediction of local and global brain dynamics in both healthy states and disorders such as 

Alzheimer’s disease, multiple sclerosis and epilepsy. However, the calculation of likelihood function at whole- 

brain scale is often intractable. Thus, likelihood-free inference algorithms are required to efficiently estimate 

the parameters pertaining to hypothetical areas in the brain, ideally including the uncertainty. We present the 

simulation-based inference method for the whole-brain models, which only requires forward simulations, 

enabling us to amortize posterior inference on parameters from low-dimensional data features representing 

whole-brain patterns in various brain disorders. We use state-of-the-art deep learning algorithms for 

conditional density estimation to retrieve the statistical relationships between parameters and observations 

through a sequence of invertible transformations. This approach enables us to for example predict excitability 

of lesioned area from new input data. The presented Bayesian methodology can deal with non-linear latent 

dynamics and parameter degeneracy, paving the way for reliable prediction of neurological disorders from 

neuroimaging modalities, which can be crucial for planning intervention strategies.

INTRODUCTION/MOTIVATION

The main purpose of this research is to provide a flexible, efficient, accurate and user friendly framework using 

deep neural network for inferenc of local and global brain dynamics to reveal the mechanism underlying disorder 
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such as Alzheimer’s disease, multiple sclerosis, and epilepsy.

METHODS

In practice, we use simulation-based inference, and low-dimensional data features from hundreds of thousands 

of simulations and train the deep neural network to produce the posterior distribution of required parameters 

to fit the mathematical models to local and global brain activity patterns.

RESULTS AND DISCUSSION

Our results indicate that SBI can efficiently estimate the full posterior distribution of virtual brain parameters 

(Excitability and global coupling in Alzheimer’s Disease), from fMRI recordings(Refs 1-4). In sum, our Bayesian 

methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the way for fast and 

reliable inference on brain disorders from neuroimaging modalities. We also provide an open-source Python 

package in Ebrain platform for neuroscience community usage.
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INTRODUCTION/MOTIVATION

One avenue for analysis of resting-state functional magnetic resonance imaging (fMRI) is the use of network models of 

large-scale brain network dynamics1. These models can be constrained by individual brain imaging data; typically, the 

diffusion-weighted imaging data are used to estimate the edge weights. The local dynamics of brain regions is represented 

by the so-called neural mass models – low-dimensional models of neuronal population activity. Neural mass models 

employed in these studies are usually derived through a series of major simplifications in order to arrive to simple, low-

dimensional models of neural dynamics. Here we examine whether such neural mass models can be obtained in a data-

driven fashion using modern methods of dynamical system identification from resting-state fMRI. We develop a suitable 

method and use it to characterize the regional differences underlying the large-scale brain dynamics2.

METHODS

We follow the general framework of large-scale brain network modeling, and we assume that for a specific subject 

the observations 𝑦𝑗(𝑡) of a brain region 𝑗 are generated by a dynamical system

𝒙�̇�(𝑡) = 𝑓 (𝒙𝑗(𝑡), 𝜽𝑟 , 𝜽𝑠, 𝑢𝑒𝑥𝑡(𝑡), 𝑢𝑗(𝑡)) + 𝜼𝑗(𝑡)

𝑦𝑗(𝑡) = 𝑔 (𝒙𝑗(𝑡)) + 𝜈𝑗(𝑡)

where 𝒙𝑗(𝑡) ∈ ℝ𝑛𝑠 is the state at time t, 𝜽𝑟 ∈ ℝ𝑚𝑟 and 𝜽𝑠 ∈ ℝ𝑚𝑠 are the region-specific and subject-specific 
parameters. The term 𝑢𝑒𝑥𝑡(𝑡) is the external input, shared by all regions of a single subject, and

𝑛

𝑢𝑗(𝑡) = ∑ 𝑤𝑗𝑖𝑔𝑐 (𝒙𝑗(𝑡))
𝑖=1

𝑛
is the network input to region j with {𝑤𝑗𝑖 }𝑖,𝑗=1 

being the structural connectome matrix of the network with n

nodes. The functions 𝑓, 𝑔, and 𝑔𝑐 are initially unknown, and 𝜼𝑗(𝑡) and 𝜈𝑗(𝑡) is the system and observation noise, 
respectively. From the observed time series of multiple subjects we wish to infer both the evolution function 𝑓 and 
observation function 𝑔, which are the same for all subjects, as well as region- and subject-specific parameters 𝜽𝑟 
and 𝜽𝑠 and the time-dependent external input 𝑢𝑒𝑥𝑡 . To do so, we adopt the general framework of amortized 
variational inference3 with hierarchical structure in parameters4. We consider the states 𝒙𝑗, the
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𝑗parameters 𝜽𝑟 and 𝜽𝑠 , and the external input uext the latent variables, and we seek their approximate posterior

distribution represented by multivariate Gaussian distributions. In the spirit of amortized variational inference, we do not 

optimize their parameters directly, but through encoder functions which transform the data to the latent variables 

(system states, regional and subject parameters, and external input, respectively).

RESULTS AND DISCUSSION

We applied the developed method to human resting-state fMRI data obtained from 100 subjects from Human 

Connectome Project5 (HCP), processed with HCP pipeline and further denoised by DiCER method6, parcellated into 68 cortical 

regions of Desikan-Killiany parcellation. The analysis using the developed method indicates that three regional parameters 

can be robustly identified from the resting-state fMRI data, all with distinct and specific roles in the dynamical model. 

The first parameter influences the presence of low-frequency oscillations. The second parameter modulates the response 

to the external input: the simulated time series change from being anti-correlated with the external input for negative 

values to correlated for positive values. Finally, the third parameter changes the response to the input from the rest 

of the network, from non-correlated for negative values to correlated for positive values. Furthermore, the first of 

our inferred parameters is strongly linked to the first component of gene expression spatial map. These results show 

that the present approach opens a novel way to the analysis of resting-state fMRI with possible applications for 

understanding the brain dynamics during aging or neurodegeneration.

Keywords: large-scale brain network modeling, model discovery, parameter inference, resting-state fMRI
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INTRODUCTION/MOTIVATION

The olivocerebellar system plays a central role in motor learning, crucially contributing to the coordination, precision 

and accurate timing of movements. Despite early conceptions of the system as strictly feed-forward, the olivocerebellar 

system is composed of multiple feedforward and feedback loops. The main loop consists of two inhibitory projections from 

Purkinje cells (PCs) to deep cerebellar nuclei (DCN) to Inferior olive (IO) and a powerful excitatory feedback connection, via 

climbing fibres. We study the dynamics of plasticity of this closed loop when Purkinje cells are subjected to stochastic input 

with hidden signals.

METHODS

IO cells in our model are biophysically plausible, with both resonant and oscillatory dynamics[1]. Our modelling 

experiments inquire on the role of induced IO reverberations and electrotonic coupling on Purkinje cell 

homeostatic synaptic plasticity, which is incorporated through Bienenstock-Cooper-Munro (BCM) type plasticity with both 

a homeostatic and LTD/LTP component. We further expand by looking at different PCs from different microzones of the 

Cerebellum (Zebrin +/- zones)[2].

RESULTS AND DISCUSSION

We uncover that specific resonant frequencies from the olivary nucleus become encoded in the Purkinje cell weights, 

rendering the system able to promote inputs with specific frequency components. We investigate whether the 

selectivity for particular frequency components is at the control of resonance and IO synchronicity. Against intuition, we 

observe that in the presence of strong coupling and synchrony firing patterns of IO cells Purkinje cells effectively 

decorrelate. This indicates that in the presence of strong coupling PCs are separating temporal patterns. We expand on 

these results by a parameter space analysis and show the relationship between the selected patterns and IO cell oscillatory 

and coupling characteristics. In line with experimental results, we find
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that during BCM induction, Zebrin - PCs have higher propensity of LTD, while positive zone PCs tend to potentiate. This 

indicates that various types of signals will be encoded differently in the microzones.

Keywords: Olivocerebellum, Homeostatic plasticity, Microzones

REFERENCES

[1] Jornt R De Gruijl, Paolo Bazzigaluppi, Marcel TG de Jeu, and Chris I De Zeeuw. Climbing fiber burst size and olivary 
sub-threshold oscillations in a network setting. PLoS computational biology, 8 (12):e1002814, 2012.

[2] De Zeeuw CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci. 
2021 Feb;22(2):92-110. doi: 10.1038/s41583-020-00392-x. Epub 2020 Nov 17. PMID: 33203932.



76. A generative model for continual learning based on 
self-organizing maps

Lorenzo Fruzzetti1,2*, Francesco Iori1,2, Alessio Fasano1,2, Egidio Falotico1,2

1The BioRobotics Insitute, Scuola Superiore Sant’Anna, Pisa, Italy,
2Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy

*Lorenzo.fruzzetti@santannapisa.it

INTRODUCTION

Artificial Neural Networks (ANNs) trained with a shifting sample space (presenting some classes early in training and others later) 

can forget previously learned information (known as catastrophic forgetting), resulting in the loss of the earlier learned classes1. 

To combat this, one solution is to store all training samples and retrain the network on both stored and new samples, but this 

approach is not efficient due to increasing memory requirements and longer training time with each iteration. A more efficient 

alternative is to use memory replay algorithms 2, which store some training samples or generate old samples using a generative 

model3.

While neural networks are well-suited for generating data4, generating new training samples from a previous training distribution 

can be challenging as it requires training a new generative model for each class, which increases both memory and training time. 

Relying on a single neural network generative model only moves the problem of catastrophic forgetting to the generative model.

Our proposed solution involves storing a representation of data and a method for generating them. Our system, based on self-

organizing maps (SOM)5, has several advantages, including the ability to generate new samples from stored knowledge, a fixed 

memory requirement, and the prevention of the network from overwriting important previous

memories. METHODS

The generative model has two parts: a self-organizing map (SOM) that holds the data representation and an importance

map that holds the significance of each unit in the SOM. The SOM is updated after each training cycle and to keep previously 

important units from being overwritten, the learning rate for each unit in the SOM is proportional to its importance (the 

more important a unit, the less it will be updated during training).

The SOM update rule is the following:

𝑙𝑟𝑖 = 𝑒
(− 

𝐷𝑖𝑐)
𝛼2 ∗ (1 − 𝐼𝑚𝑝𝑖 ) 1
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The learning rate of each unit in the SOM 𝑙𝑟𝑖 is determined by the unit's distance 𝐷𝑖𝑐 from the closest unit 𝑐 to the input, and its 
importance 𝐼𝑚𝑝𝑖 .

The importance of each unit in the SOM increases if it is active during a cycle and the importance map is updated between cycles 

through an importance function. This function determines the most significant units in each cycle and controls their future 

changes through the following equation.

ΔImpi

𝑛

= 
1 

∑ 𝑒(− 𝐷𝑖𝑎) 2𝑛
𝑎=1

𝐼𝑚𝑝𝑖 = 𝐼𝑚𝑝𝑖 + ΔImpi 3

Where ΔImpi is the amount of update of unit 𝑖, − 𝐷𝑖𝑎 is the Euclidean distance between the unit 𝑖 and the unit 𝑎, which is 

one of the 𝑛-th (in our case n = 3) most active unit in this cycle, the activity of the 𝑖 unit and unit 𝑎. All units with an importance 
greater than 1 are reduced to an importance of 1.

Generating new samples involves selecting units from the SOM, where the likelihood of choosing a specific unit is proportional 

to its importance. This allows the network to produce the most significant memories acquired during the entire learning process.

In this project, we trained the SOM on a portion of the MNIST dataset. The training process was divided into two stages. During the 

first stage, we fed the SOM only the inputs belonging to the classes associated with numbers 0 and 1. In the second stage, we provided 

the SOM with inputs associated with classes 1 and 2.

RESULTS AND DISCUSSION

In the study, two variations of the SOM were compared. The first SOM was trained using the previously described

algorithm while the second SOM did not consider the importance of each unit as the 𝐼𝑚𝑝𝑖 term was removed from the

equation 1. The training process was done on the MNIST dataset and was divided into two phases. During the first phase, only classes 

0 and 1 from the MNIST dataset were used, while in the second phase, only classes 1 and 2 were included.

The results are illustrated in the following figure: Subfigures a and c were trained in the first cycle, while subfigures b and d were 

trained in the second cycle. Although there was no significant difference between a and c, the samples obtained after the second 

cycle showed significant differences. The SOM in b lost the memory of class 0, while in d a representation is maintained.

Our results indicate that incorporating an importance map into SOM can help in generating samples from classes that are no longer 

available and may reduce the impact of catastrophic forgetting using memory replays algorithms without increasing the 

memory requirement.



Figure 1: results of training of two SOM. a) trained on 0 and 1, no importance map. b) trained on 1 and 2, no importance map. c)
trained on 0 and 1, importance map. d) trained on 1 and 2, importance map

Keywords: Artificial Neural Networks, catastrophic forgetting, memory replay algorithms, self-organizing maps, data 
representation, data generation
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INTRODUCTION/MOTIVATION

Simulating large networks of neurons is computationally demanding. When modelling large networks, one may be mostly 

interested in one or a specific populations of neurons. Other populations of lesser interest may be modelled at a coarser scale. 

Signals such as local field potentials (LFPs) can readily be closely approximated by the aggregated activity of populations of neurons 

without the detailed spiking of individual neurons (Hagen et al. 2022).

Recently developed mesoscopic population models have been shown to accurately be able to capture the population 

averaged spiking activities of networks of generalized leaky integrate-and-fire (LIF) neurons with escape noise 

(Schwalger et al. 2017), including fluctuations due to finite-size effects. Yielding an explicit probability distribution over 

population averaged spiking activity, such mesoscopic models are statistically tractable, and can be used to infer parameter 

values consistent with observed population spiking activity (René et al. 2020).

In this ongoing work, we develop a mesoscopic population model that can include input noise in the form of a Poisson 

process, based on previous work by (Chizov & Graham, 2008), as well as taking into account the noise from random 

connectivity within populations. We aim to implement and systematically compare these low- dimensional 

population models to their high-dimensional counterparts in larger networks comprising multiple populations.

METHODS

Combining existing work by (Schwalger et al 2017) and (Chizov & Graham, 2008), we formulate a mesoscopic population 

model based on an underlying LIF neuron model with exponentially correlated synaspses. An escape rate is used such that 

the spiking statistics matches those from populations receiving random Poisson input. An additional noise term, based on the 

connection statistics, is introduced to account for the noise resulting from the random network connectivity, The 

population model is then compared to full simulations of networks of LIF neurons using the NEST simulator (Spreizer et 

al. 2022). The population model can itself be integrated into the
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NEST simulator using NESTML (Linssen et al. 2022). Since the escape rate yields an explicit probability distribution over the 

population activities, the gradient of the log likelihood of an observed time series of population activities can be found using 

automatic differentiation libraries such as JAX (Bradbury et al. 2018), and can be used to optimize model parameters.

RESULTS AND DISCUSSION

Our preliminary results are promising, showing that the theoretical approximations can accurately capture the noise 

present in the networks of LIF neurons.

Keywords: computational neuroscience, population model, inference
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INTRODUCTION/MOTIVATION
Absence seizures are a type of generalized epileptic seizures, characterized by a brief loss of 
consciousness that can last from a few seconds up to tens of seconds. Electrophysiological 
measurements during ictal periods exhibit a characteristic rhythmic oscillation known as spike-and- 
wave discharges (SWD), which occur at a frequency of around 3Hz in humans [1]. A recognized 
animal model for this type of epilepsy is the GAERS rat, which exhibits absence seizures with SWD 
patterns in a frequency between 5 to 10 Hz and which shows an equivalent response to 
pharmacological treatments used in humans [2]. The mechanisms behind this type of epilepsy are still 
under discussion, and in particular the lack of response to external stimulation is still not well 
understood. One possibility is that the lack of response occurs due to a restricted propagation of 
information in early stages of the sensory pathways, while another possibility is that the lack of 
response occurs due to alterations at later stages of motor control and decision making areas [3]. In 
this work, we evaluate the stimulus response during absence epilepsy via experiments and 
simulations

METHODS
For simulations we used a whole-brain model built in the EBRAINS platform. The model was built 
via the use of mean-field models of Adaptive-Exponential LIF (AdEx) neurons in the TVB platform [4, 
5], where each node (area/compartment) in a brain connectome is represented by a single mean- 
field. Each node represents a population of 10000 neurons connected over a random directed 
network where the probability of connection between two neurons is p = 5%. We considered 
excitatory and inhibitory neurons, with 20% inhibitory neurons and 80% excitatory (Figure 2.A). To 
perform the whole brain simulations we made use of the BAMS rat connectome [6], a project of 
aggregated connectome data which currently contains over 50000 connectivity reports from the rat 
brain. Experiments were performed in GAERS rats, with simultaneous EEG and functional magnetic 
resonance imaging (fMRI) measurements at 9.4T. EEG signals were used to identify ictal and inter- 
ictal periods (Figure 1.A), while fMRI was used to map neuronal derived hemodynamic activity 
during visual and whisker stimulation performed in ictal and in inter-ictal states.



RESULTS AND DISCUSSION
Statistical activation maps were created from fMRI measurements in response to stimulus during ictal 
and inter-ictal periods and compared between the two states (Figure 1.B). A general reduced 
hemodynamic response and limited propagation of activity was observed during ictal periods for both 
type of stimulation. For visual stimulation, activation changes were seen in the visual, somatosensory, 
and frontal cortices. For whisker stimulation, activation changes were seen in the somatosensory, 
auditory and frontal cortices. The number of activated voxels due to stimulation was also substantially 
lower during ictal periods (136% and 179% more during inter-ictal period for visual and whisker 
stimulation respectively).
With the use of simulations we showed first that within this whole-brain model normal and ictal 
neuronal states can be reproduced, exhibiting asynchronous irregular activity (AI) and SWD-like 
dynamics respectively (Figure 2.B). Then we simulated the effect of an external stimulus during each 
neuronal state and we observed a restricted propagation of the stimulus during the ictal state in 
comparison with the AI state, in agreement with experiments. This is explained due to the dominance 
of the seizure dynamics during ictal periods even under stimulation, added to the periods of low 
excitability exhibited during the ‘wave’ phase of the oscillatory dynamics that reduce the 
responsiveness of the system.
The results obtained in this study suggest that the lack of response may be in part originated due to 
a limited propagation of information during seizures starting at early stages of the sensory pathways. 
A better understanding of the stimulus response during ictal states may help to disentangle the 
processing of information during seizures, which can be of relevance for medical treatments of 
epilepsy such as a deep brain stimulation.

Figure 1: A) EEG recording trace at 2 different temporal scales during ictal and interictal states and 
with stimulation onset marks B) fMRI statistical F-maps of stimulation during interictal and ictal 
states. S1/S2 = primary and secondary somatosensory cortex, SC = superior colliculus, Thl = 
thalamus, VC = visual cortex.



Figure 2: A) Diagram of the model. Mean-field models simulations where performed using the TVB 
platform in EBRAINS (diagram adapted from Ref.[5]). B) Top: Time-series of neuronal activity under 
stimulation during inter-ictal (asynchronous irregular) and ictal (spike-and-wave) periods. The 
vertical dashed line and horizontal black line indicate the beginning and duration of the stimulation. 
Bottom: statistical maps of neuronal activity during stimulation for each state.

Keywords: functional magnetic resonance imaging, GAERS, absence seizure, brain responsiveness, 
awake rat, whole-brain simulations, mean-field models
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INTRODUCTION/MOTIVATION

A fundamental ingredient for perception is the integration of information from different sensory modalities, also known 

as multisensory integration (MSI)[1,2]. It is not clear how different brain areas contribute to this process, as identifying MSI 

areas remains a challenging task due to experimental limitations. Computational models have traditionally focused only on 

a few areas due to the lack of reliable connectivity datasets, so the implications of brain-wide communication for MSI are 

still unknown. We present here a theoretical and computational study of the large-scale mechanisms underlying MSI in the 

mouse brain, by constraining our model with recently acquired anatomical brain connectivity datasets and analyzing the 

resulting brain dynamics during simulated multisensory perception tasks.

METHODS

We considered connectivity data from the mouse [3,4](Fig. 1A) to build the large-scale structure of our mouse brain model, 

and combined it with a firing rate approach for the dynamics of each cortical area. Using the resulting large-scale cortical 

network (full model), we simulated a visuotactile stimulation protocol in which a weak, brief somatosensory input and a 

stronger and longer visual input were presented to the barrel fields of the primary somatosensory cortex (SSp-bfd) and the 

primary visual cortex (V1), respectively (Fig. 1B). To better understand the origin of the dynamics of this full model, we also 

built a simplified model constituted by N fully connected nodes, and included heterogeneity in their internal properties 

(such as their activation thresholds).

RESULTS AND DISCUSSION

When both sensory stimuli coincided in time, the full model showed an enhanced firing rate response. Such enhanced 

response was markedly strong and nonlinear for specific areas, and allowed us to identify those as candidate MSI areas –

for example, secondary visual area RL (Fig. 1B), which plays an important role in visuotactile integration [5]. We subsequently 

used this strong response to weak multisensory stimulation to characterize the crossmodal response of a given area in the 

model. By computing this quantity for all areas, our simulations revealed the existence of a hierarchy of crossmodal 

responses, with areas at the top of the hierarchy being the best multisensory integrators. Unexpectedly, our model predicted 

that the hierarchical rank of any given area is
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highly fluid, and depends on the level of visual input (Fig. 1C). The relevance of any area for MSI therefore depends on input 

strength –and by extension, on any context-dependent signals able to alter the crossmodal responses.

By simulating the simplified model (Fig. 1D) and developing a mean-field approximation, we found that the structural 

heterogeneity of the network [4,5] was a plausible origin of the hierarchical dynamics. Node heterogeneity induced 

‘crossing points’ between the activation functions of the different nodes (Fig. 1D), i.e. two nodes can switch places if their 

activation curves are different. The crossing points were more frequent in the vicinity of the onset of activity (Fig. 1D inset), 

when nonlinear firing properties are more salient. The results were also replicated in other brain models [7,8,9] and further 

analyzed using refined time-series analysis [10]. Our work provides a compelling explanation as of why it is not possible to 

identify a unique MSI area even for a well-defined multisensory task, and suggests that MSI circuits are highly distributed and 

context-dependent.

Figure 1: (A) Brain map of the mouse brain used to constrain our large-scale model, from [5]. (B) The network receives baseline visual 

input, and after a shorter somatosensory input, the response of different areas (here, area RL) is analyzed. (C) Ranks of areas as a function 

of their crossmodal response, with rank 1 (20) linked to strongest (weakest) response. (D) Input- output functions for the simplified network 

model reveal that hierarchical switches arise from crossing points (black dots) between curves on the firing onset (inset).

Keywords: computational neuroscience, large-scale brain model, multisensory integration, brain dynamics, mouse, 

perception, functional hierarchies, mean-field approaches.
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INTRODUCTION/MOTIVATION

Fig.1 The final SpiNNaker 2 system (SpiNNCloud) is a real-time neuromorphic supercomputer consisting of thousands of SpiNNaker 2 chips.

SpiNNaker 2 [1] is a digital neuromorphic hardware system designed in the Human Brain Project by TU Dresden and the 

University of Manchester. The final SpiNNaker 2 system contains thousands of interconnected SpiNNaker 2 chips. Each 

SpiNNaker 2 chip contains 152 Processing Elements (PEs). Each PE contains an ARM core and several hardware accelerators for 

neural algorithms, including an exponential accelerator, a true random number generator and a MAC array. In addition, 

each PE can adjust its supply voltage and clock frequency dynamically through Dynamic Voltage and Frequency Scaling (DVFS). 

These new features enable efficient simulation of spiking neural networks (SNNs) on different abstraction levels, including 

synaptic dynamics and neural networks consisting of point neurons. Since the simulation runs on the ARM core, SpiNNaker 2 

could also be used for the simulation of mean field approximations of neuron populations. In this poster we present 

efficient simulation of synaptic dynamics and spiking neural networks.

METHODS
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Reward-based synaptic sampling [2] is a structural plasticity model which describes the stochastic rewiring of synapses 

as a random walk guided by reward signals. Computationally, the synaptic weight depends exponentially on the 

synaptic parameter  , and is an offset constant:

The change of the synaptic parameter is composed of the effects of the prior distribution, the gradient of the value function 

and the random walk:

where is a scaling factor, and are the standard deviation and mean of the prior distribution, is the gradient of the 

value function, is the temperature and  is a random number.

For a conventional CPU without accelerators, the computation of the exponential function and the random number 

generation dominates the computation time of this synapse model. But with the exponential accelerator and the random 

number generator in SpiNNaker 2, the computation time and energy consumption can be drastically reduced [3].

In addition to efficient simulation of synaptic plasticity models, with DVFS, SNNs consisting of point neurons can also be 

efficiently simulated. During an SNN simulation, the number of spikes generated by the network fluctuates over time, which 

leads to fluctuations of compute workload for the hardware. With DVFS, each PE can dynamically adjust its supply voltage and 

clock frequency, so that higher power consumption only occurs when there is a higher workload. This is illustrated in a synfire 

chain simulation with 4 PEs below [4].



Fig. 2 A synfire chain network is simulated with 4 PEs on a SpiNNaker 2 chip. The blue dots are the spikes, the red lines indicate the Performance Level (PL) of a PE, 

i.e. the voltage and frequency configuration, and the green lines indicate the number of spikes received by a PE, i.e. the workload. The PL is only increased 

when more spikes are received, thus consuming more power only when it’s necessary.

RESULTS AND DISCUSSION

For the simulation of synaptic sampling, with a conventional CPU, where the exponential function and random number 

generation are done only with software, one plasticity update takes 236 clock cycles, whereas with the exponential 

accelerator and random number generator, the simulation with SpiNNaker 2 takes only 110 clock cycles, achieving a 2X 

speedup [3].

For the simulation of synfire chain, where the spike activities fluctuate over time, if no DVFS is available, the PE has to always 

run with the highest clock frequency and supply voltage. But with DVFS, 60.4% power reduction is achieved compared to 

without DVFS [4].

In addition, since the simulation in SpiNNaker 2 is done with software running on the ARM core, mean field simulation 

is also possible, and simulation of different levels can be combined in the same simulation, enabling multi-scale simulation 

of SNNs.

Keywords: SpiNNaker 2, Neuromorphic Computing, Multi-Scale Neural Network Simulation, Synaptic Plasticity, Spiking 

Neural Network, Hardware Accelerator, True Random Number Generator, Exponential Function Accelerator, 

Dynamic Voltage and Frequency Scaling
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INTRODUCTION/MOTIVATION

Linking neuroscience data with brain models has reached a level of sophistication, which is too complex to handle for 

individual laboratories in an era of big data, high performance computation and interdisciplinary research [1]. Advances in 

structural and functional imaging provide huge amounts of data and allow investigating networks of unprecedented degrees 

of detail and complexity. Large amounts of data alone, even if well analysed, do not necessarily advance our 

understanding of how the brain works. Adding more data or more modalities of the same event will not alleviate this concern. 

Virtually indistinguishable network activity can arise from various biophysical mechanisms and genetically identical organisms 

can show consistently different neuronal activity associated with the same behaviour [2]. Such one-to-many and many-to-one 

property is well known in complex systems and is the cause of intra- and inter-subject variability, posing challenges for 

mechanistic identifiability. Causal inference integrating data, models and methods proposes a solution to this basic obstacle 

to progress in neuroscience.

METHODS

To ensure interoperability of heterogeneous multiscale data, models, and analysis workflows, we have established a brain 

reference framework organizing data and computational models in the same informatics environment with standardised 

spatial referencing and verified links between data and model parameters, validated against empirical brain imaging 

data. We organised, mapped, co-registered structural (molecular, cellular, synaptic and connectome data) and functional 

brain data (Cortico-Cortical Evoked Potentials, fMRI, simultaneous fMRI/EEG, intracranial and simultaneous scalp-EEG). We 

mapped regional data features upon detailed mathematical models across scales (cellular to full brain). Missing data and 

mappings were addressed by gap maps, interpolations, and ML techniques. We integrated multiscale data-driven network 

models (microcircuit models for cortex, cerebellum, hippocampus, basal ganglia), linking between scales using various 

simulation engines (Neuron, Arbor, NEST, TVB), and developed specific component workflows for microcircuit 

reconstruction (BSB, Snudda) [3], strategies to generate mesoscale mean-field models of brain circuits [4] and co-

simulation technologies for simultaneous operation on mixed scales [5]. Validation workflows using various types of 

Bayesian inferences (MCMC, HMC, DCM, SBI) have been developed and integrated in EBRAINS [6, 7]. Figure 1 illustrates the 

workflows integrated in EBRAINS and showcases in cohort studies of aging populations [8] and epilepsy demonstrate their 

use.  
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RESULTS AND DISCUSSION

The systematic integration of multiscale heterogeneous data [9] and models into a common spatial and 

technological reference framework in EBRAINS enables causal reasoning, promotes the use of digital twin technology 

and supports end-to-end modelling of the human brain with a promise for pharmacological, clinical and technological 

translation (e.g. early detection of trajectories of brain disease manifesting at different levels of brain organisation, 

personalised tracking of brain health, better stratification of patients). Through EBRAINS, the brain reference framework 

and its validated human brain models will be distributed for immediate usage in everyday basic research and clinical 

application.

Keywords: multiscale data, brain reference system, brain network model, digital twin, model Inversion.
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Figure 1. Workflows in WP1. Multiscale data of heterogeneous origin and different scales (molecular, cellular, synaptic and 

connectome data) are integrated in the same brain reference system (left). Brain models are represented in the same 

space and brain data are mapped upon the corresponding model parameters. Causal inference techniques are applied 

to empirical and simulated functional brain data and estimate posterior probability distributions of mechanistic 

representations of possible causes. This process advances our knowledge from initial premises and empirical observations 

to logical conclusions by quantifying the uncertainty in a model and data.
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INTRODUCTION/MOTIVATION
Alzheimer's disease (AD) is the predominant form of dementia, with more that 4 milions new cases each 
year worldwide. Even though several studies during the past decades focused on the structural 
alterations induced by the disease, currently, a reliable diagnosis of the disease is still far from being 
achieved [1]. Additionally, the relationship between structural changes and electrophysiological 
abnormalities commonly seen in Alzheimer's and pre-Alzheimer's patients remains unclear [2]. Gaining 
insights into the underlying connections between these anomalies and their causal changes would 
greatly enhance the diagnostic accuracy using non-invasive, commonly available scans like EEG. Here, 
we discuss a analysis pipeline in which the degree of structural alterations in pre-AD subjects has been 
determined by combining experimental EEG recordings with computational modelling of cortical 
activity, implemented with the EBRAINS The Virtual Brain open-source platform [3].

METHODS
We performed resting-state EEG recordings on 9 individuals with subjective cognitive decline (SCD) [4], 
12 with mild cognitive impairment (MCI) [5], and 9 age-matched healthy controls (HC). We computed 
for each subjects the power spectral density (PSD) and the functional connectivity between EEG 
electrodes (FC) studying the statistical differences across the three groups with a one-way ANOVA f-test. 
We then developed a TVB-based multiscale model of the human cortex, altering the parameters to 
capture the evolution of the disease, modelling both synaptic alterations and connectome degeneration 
[1]. The first was condensed in a local parameter of degeneration (lp) and the latter in a connectivity 
parameter of degeneration (cp), both comprised between 0 and 1. With this model, we reproduced for 
each group the mean values of both FC and PSD by fitting the model parameters to the experimental 
EEG recordings, thus determining for each group the mean degree of structural alterations. 

RESULTS AND DISCUSSION
The PSDs of the three groups were significantly different in the alpha [8-12 Hz] (f = 6.87, p = 0.011) and 
theta [4-8 Hz] (p = 4.88, p = 0.37) bands. In delta [0-4 Hz] and theta bands, average PSD was higher for 
MCI subjects than for SCD, and for SCD than HC. The inverse ordering is instead present in the alpha 
band, Figure 1a. 
Interestingly, a non-linear evolution of significant functional connections emerged from FC analysis 
(Figure 1b-c):  the HC group had an average of 26.4% significant connections, compared to 28.3% for the 
SCD group and 23.5% for the MCI group.
Overall, these results are consistent with the literature on evolution of EEG biomarkers in AD [2].



From these EEG features we fitted the model parameters to estimate the values of synaptic and 
connectome degeneration from the EEG recordings. The results of the fitting procedure are three 
parameter combinations, one per group, whose ordering is coherent with the severity of the clinical 
diagnosis. In particular, we found, for HC: lp = 0.52, cp = 0.24; for SCD: lp = 0.64, cp = 0.46; for MCI: lp = 
0.74, cp = 0.90.
The model implemented with these parameter values was able to reproduce the experimentally 
observed PSD ordering  in delta, theta and alpha bands, (f = 3.82, p = 0.04 in the theta band, f = 3.38, p = 
0.063 in delta and f = 1.69, p = 0.22 in alpha, see Figure 2a). We captured also the non-linearity of FC 
values (24.0 % relevant functional connections in the modeled HC network, 24.8 % in the SCD, and 19.1 
% in the MCI one, Figure 2b-c).

These findings show that computational models can accurately reproduce experimental EEG recordings 
in AD evolution. Moreover they can shed light on the underlying mechanisms of anomalies.
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INTRODUCTION/MOTIVATION

While positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET) is an established imaging technique in clinical 

oncology, it is of emerging relevance in neurology in the field of neurodegenerative diseases. Recent approaches aim to 

use it as a functional measure of brain activity and connectivity , analogous to electroencephalography (EEG) or 

functional magnetic resonance imaging (fMRI). From a computational viewpoint, large-scale brain simulation with The Virtual 

Brain (TVB, www.thevirtualbrain.org) can reproduce such measures through biophysically grounded forward models, linking 

neuronal activity to EEG and fMRI signals. However, this link is not yet fully understood for FDG-PET. Besides the neuronal 

energy consumption, it further involves vascular and glial mechanisms. In this work, we propose a mechanistic forward 

model relating glucose metabolism and hence FDG-PET signals to the underlying electrophysiological activity in a large-scale 

brain simulation.

METHODS

We employ a bottom-up approach, encompassing the impact of neuronal firing on adenosine triphosphate (ATP) levels and 

energy metabolism. Therefore, we make use of an existing neurogliovascular model of ATP metabolism [1]. Derived from this, 

we propose a forward model that takes the simulated raw neuronal activity as an input and outputs a virtual FDG-PET signal, 

allowing for the calculation of a virtual static PET image and virtual PET-derived functional connectivity (FC). Model 

optimization and validation are performed based on a data set of simultaneous resting state fMRI and functional FDG-PET 

[2].

RESULTS AND DISCUSSION

Our model predicts the empirical PET data to a large extent while outperforming an existing forward model that is in use 

for fMRI. We observe high correlations between simulated and empirical static PET, for which the model was optimized based 
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on a subset of 3 subjects. Further, the same model reproduces the FDG-PET derived FC, for which the model has not been 

optimized. We show in silico fundamental differences between FDG-PET signal outputs and fMRI, including dependence on 

amplitude and frequency of the underlying neuronal activity for FDG- PET. Overall, our results suggest that the 

neurogliovascular ATP model may provide additional insights into brain function compared to other imaging modalities that 

do not take into account energy metabolism.

The model extends the fields covered with TVB to a larger variety of clinical applications, as PET is more frequently available 

than fMRI in clinical routine – for example, in the diagnostic workup of neurodegenerative diseases. Moreover, FDG-

PET-derived FC promises to complement restrictions that are immanent to fMRI-based approaches, as it inherits a 

different degree of noise and differs in the resolution of time and space. Ultimately, the presented model is a step towards 

a better understanding of cerebral glucose metabolism and its relationship to brain activity.

Keywords: FDG, PET, brain simulation, glucose metabolism, The Virtual Brain

FIGURES

Figure 1: Simulating [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) in The Virtual Brain (TVB). Left: 

Structural connectomes (SC) are used as an input to TVB, in order to produce raw neural activity. By optimizing model parameters 

to reproduce functional connectivity (FC) derived from functional magnetic resonance imaging (fMRI), we obtain 

physiologically plausible raw activity. Center: The simulated neural activity acts as an input to a biophysical forward model of 

the neurogliovascular (NGV) energy metabolism. Spiking activity is ensued by the consumption of adenosine triphosphate 

(ATP) and triggers a “hunger” signal. Therefore, glucose and FDG molecules are released from blood vessels into the 

neuron to compensate for the consumed ATP. The FDG is trapped in the cell and gives a contribution to the FDG-PET signal. 

Right: This virtual FDG-PET signal is optimized to reproduce empirical static PET data of a subset of subjects. The remaining 

subjects are used for data validation, taking also into account FDG-PET-derived FC.
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INTRODUCTION/MOTIVATION

Constructing a computational model of a neuronal network requires determining which neurons are connected to each 

other. Connectivity rules either specify explicit pairs of source and target neurons or make statistical assumptions on 

the connectivity between source and target neuron populations by abstracting from neuroanatomical data. Small 

differences between such rules may lead to network instances with statistically different dynamics. As the mathematical 

definition of connectivity forms the basis for algorithmic implementations, sustainable research demands this 

description to be complete and understandable.

Ambiguities and missing details are unfortunately frequent and hinder the reproducibility and extensibility of models and 

simulation studies. One possible reason for this observation is that the field of computational neuroscience still lacks 

standardized means for the description of network models [1].

METHODS

To find out which connectivity structures computational neuroscientists use and how they are described, we first review 

network models available in the repositories ModelDB [2] and Open Source Brain [3]. Analyzing both manuscript and code, 

we characterize all selected models according to “Metadata” (When, where, and by whom were article and code 

published?), “Description” (How does the article describe the connectivity and is the description complete?), 

“Implementation” (How is the connectivity technically implemented?), “Network” (How are network nodes and edges 

characterized?), and “Concepts” (Which connectivity concepts are realized?).

Next, we review how connectivity is abstracted in description languages and simulation interfaces: We distinguish 

between procedural, declarative population-level, and algebraic descriptions and list population-level connection rules of 
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languages and simulators, e.g., CSA [4] and NEST [5]. Based on this dual review, we derive a set of connectivity concepts 

together with a graphical notation for the unambiguous description of network models.

RESULTS AND DISCUSSION

Our main result is a proposal for a standardized nomenclature for connectivity concepts and a graphical notation for 

network diagrams, which we derive by analyzing, unifying, and formalizing approaches in use in the computational 

neuroscience community [6]. Reviewing a representative number of published network models reveals that the 

descriptions of connectivity in scientific publications are often insufficient to reproduce the connectivity actually created 

by accompanying source code. High-level connectivity concepts, defining the connectivity between neuron populations, 

may serve as concise and informative network specification not only for the textual and mathematical description but 

also for the implementation of connectivity if an agreement on the precise terminology is achieved. Our proposed 

guidelines aim to provide a reference for future descriptions of deterministically and probabilistically connected networks, 

including networks embedded in metric space. We demonstrate and discuss the practical use of the ideas in three 

examples covering complementary network models. We focus on expressing these networks using our graphical and 

symbolic notation to facilitate an intuitive understanding of network properties. This notation is already adopted by the 

graphical user interface NEST Desktop [7]. We hope that the proposed standardizations will advance complete and concise 

descriptions of network connectivity and also guide the implementation of connection routines in simulation software 

and neuromorphic hardware systems. Most neuronal network models developed until now have limited complexity, but 

newly developed research infrastructure such as EBRAINS and more experimental data becoming available will lead to 

increasingly complex models that need to remain manageable by individual scientists. By promoting consistency, we hope 

our work provides a contribution toward overcoming the complexity barrier in computational neuroscience.

Figure 1: Connectivity patterns reflecting the most common rules.
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INTRODUCTION/MOTIVATION

Silencing specific regions of the brain has become a popular approach for studying brain function and its underlying 

mechanisms [1], yet its effect on the whole-brain activity remains largely unknown. This study aims to shed light on the 

mechanistic relationship between focal brain region silencing and whole-brain activity, providing a deeper understanding of 

the effects of local modulation on brain function.

We investigate two mouse fMRI datasets upon focal silencing of brain sites, obtained by either lesioning thalamic

nuclei or by chemogenetic shutdown of cortical hubs (Fig.1,a).

We report a structured and widespread reconfiguration of functional connectivity in all experiments, showing that decreased 

correlations occur along specific networks, and are paralleled by increased correlations in other channels (Fig.1,b-c).

A robust mechanistic interpretation of the processes underlying this structured re-organization is achieved via a simulation-

based inference (SBI) approach [2,3], where brain activity is simulated in-silico and model parameters are inferred to best 

match the observed data (Fig.2,a). The model predicts increased neuronal excitability in the silenced region, paralleled by 

increased segregation of brain regions (Fig.2,b).

Our results provide a solid mathematical grounding to recent evidence on the effects of neuronal silencing [4] and pave the 

way to developing personalized predictions of local modulation effects over large-scale brain organization.
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METHODS

In two independent experiments, we performed mouse brain imaging 10min before and 10min after region silencing 

(Fig.1,a). The 1st dataset was obtained by DREADDs inhibition of the retrosplenial cortex (RSC; 14 mice) or anterior cingulate 

area (ACA; 7 mice), which are generally considered functional hubs in the mouse brain. The data was

acquired using a multiband EPI (TR=0.3s) [5]. 

The 2nd dataset was obtained from 6 C57Bl/6J mice with irreversible lesions in thalamic nuclei (Th) induced by i.c. injections 

of NMDA under ketamine + xylazine or isoflurane, and BOLD rs-fMRI acquisitions (TR=2s) were performed before and 

6 wk after surgery under light anesthesia.

Both datasets were registered onto a parcellation of the Allen Mouse brain consisting of 148 regions of interest (ROIs). 

Tracer structural connectivity was imported from the Allen Institute [6].

In whole-brain simulations, the activity of each ROI is described by suitable dynamical equations [7]. The brain regions are 

connected through the Allen mouse connectome, resulting in a system of coupled equations. Simulated activity is 

obtained by numerical integration in The Virtual Mouse Brain (TVMB) [8] and depends on the

choice of local and global parameters (Fig.2,a). The parameter 𝜂 measures the neuronal excitability within the

lesioned region. The coupling 𝐺 measures the impact of structure over the local dynamics, with low- and high-𝐺 values 

indicating network segregation and integration, respectively.

In this work we exploited a simulation-based inference (SBI) approach [2,3], using deep artificial neural networks

(ANNs) to infer the best parameter configuration that explains the observations (Fig.2,a).

RESULTS AND DISCUSSION

Analyzing empiric datasets we show that focal region silencing results in significant network-wide reconfiguration (Fig.1,b). 

While local silencing induces loss of functional connectivity on average, we show that decreased correlations along 

specific networks are paralleled by increased correlations in other channels (Fig.1,c).

We simulated brain activity in TVB and explored the parameter space by varying global and local model 

parameters. For each mouse, we used SBI to spot the parameter configuration producing the best fitting of simulations 

to observations for pre- and post-silencing recordings. We show that the silencing of a brain region

results in a paradoxical increase of neuronal excitability (higher 𝜂 parameter), and increased network segregation

(lower 𝐺 parameter) (Fig.2,b).

Our results ascribe the complex reconfiguration of large-scale networks to the adaptation of both local and global mechanistic 

factors, which emphasize the necessity of concurrent multilevel investigation of brain modulation, for both research and 

clinical assessments.

Keywords: Mouse fMRI, Resting-state, Thalamic lesion, chemogenetic shutdown, Brain

simulations, Inference
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Figure 1: Widespread network effects of focal region silencing. (a) We recorded whole-brain activity before and after silencing 
of brain sites. In a first dataset, either the retrosplenial cortex (RSC) or the anterior cingulate area (ACA) were 
chemogenetically shutdown and the data was recorded using ultrafast fMRI (EPI). In a second dataset, thalamic nuclei (Th) 
of the mouse were lesioned and data was recorded using 7T fMRI. (b) Network reconfiguration after focal 
silencing is widespread as observed by the increase and decrease of pairwise correlations. (c) In most subjects 
average Functional Connectivity (FC) decreases in post-lesion recordings, consistent with the higher number of decreasing 
pairwise correlations versus increasing ones. These effects are not consistently observed in a control group (CTRL).

Figure 2: Mechanistic analysis of brain networks reconfiguration after focal silencing. (a) For each recording, simulation-
based inference (SBI) was used to search for the ( 𝐺, 𝜂 ) parameters configuration producing simulations that best 
match the empiric data features. (b) The estimation of parameters shows that pre- and post- lesion regimes change in a 
consistent way across subjects and datasets. Namely, the global coupling 𝐺 decreases and the local excitability 𝜂 of the 
silenced region increases, consistently across subjects and silencing modalities.
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INTRODUCTION

Deep brain stimulation (DBS) is a successful symptom-relieving neuromodulation technique established for many different 

neurodegenerative diseases. However, the effects of DBS on the local scale around the electrode and on the global scale of 

macroscopic brain regions are still insufficiently understood. Recently, we established a multiscale model for DBS that 

combines fine-grained spiking modeling for the surrounding areas of the electrode and coarse-grained mean-field modeling 

to offer a whole-brain perspective on the effects of DBS [1]. The code of this model and the data used in this previous study 

are publicly available on EBRAINS. We provided proof of concept for virtual DBS in a co-simulation multiscale environment 

with The Virtual Brain (TVB). However, bringing such a virtual DBS model to the clinic for improving and accelerating 

DBS programming for the individual Parkinson’s disease patient warrants extensive validation. Furthermore, our previous 

model was not sensitive to the exact 3D location of the electrode, which is a crucial factor for the successfulness of DBS.

METHODS

In this study, we compared our multiscale DBS model with empirical DBS ON and OFF resting-state fMRI BOLD data (N=2, 

biphasic stimulation). We also extended our previous multiscale model to allow for a high-resolution modeling around the 

DBS electrode by interfacing TVB with electrical field (E-field) modeling, which includes the electromagnetic properties of 

the surrounding tissue of the electrode and estimates the electrical field changes due to the DBS pulses. To this end, we 

adapted the surface-based modeling approach of An et al. [2] to include high-resolution modeling around the DBS 

electrode and traced the activations of the fibers towards cortical
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regions. Inputting the localizations of Sensight directional DBS leads (N=9, Medtronic Percept), we simulated local field 

potentials and BOLD data.

RESULTS AND DISCUSSION

Virtual DBS showed increases as well as decreases in BOLD activity and correlations among sensorimotor and basal ganglia (BG) 

regions (Fig. 1ACD). For some single regional and selective pairwise correlations, those stimulation effects seem to be 

congruent with decreases or increases in empirical data (Fig. 1ACD). Further, we established a first link between the individual 

simulated dynamics (local field potentials based on the individual localizations of the Sensight DBS lead, N=9) and the clinical 

improvements of patients after DBS using principal component analysis (PCA) (Fig. 1B). Our results are still preliminary and 

warrant further testing and validation on larger sample sizes. With the virtual DBS model, we can observe the local and global 

dynamics simultaneously (Fig. 1C-E) which has the potential to identify DBS network effects and generate new hypotheses 

for the mechanisms of DBS. Our extended multiscale model is sensitive to different parameters of the E-field 

(amplitude/frequency of the stimulus, precise location) and can be used in the future to test different DBS programming 

and/or surgical targeting which may determine optimal clinical outcome tailored to individual symptomatic profiles.



(A) Empirical vs. simulated BOLD (B) Link with motor improvement

(C) Empirical BOLD ON-OFF (D) Simulated BOLD ON-OFF

Figure 1: Comparison of simulated DBS effects with empirical BOLD data and first link of simulated dynamics with clinical 

symptoms. (A) Simulated data was able to capture 5 out of 6 increases/decreases of BOLD correlations under DBS ON (in the 

left hemisphere). (B) PCA on the simulated dynamics shows a reasonable classification of patients based on their motor 

improvement under DBS ON. (C) Empirical and (D) simulated BOLD activity fluctuations due to DBS. (E) Snapshots of the 

simulated LFP signal in the BG regions after stimulus onset.

Keywords: The Virtual Brain, multiscale modelling, electric-field modelling, deep brain stimulation
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INTRODUCTION/MOTIVATION

Computational neuroscience is experiencing a steady growth in available simulation tools applicable to 

morphologically detailed cell descriptions [1, 2, 3, 4, 5, 6]. Arbor is a relatively recent entry [7] in the competition and is 

designed to elevate computational neuroscience to the scales of simulation of the human brain. It does so by enabling HPC 

simulation with the same ease as local simulation. Recent developments include inclusion as backend in BluePyOpt, a 

parameter optimization library; publication of the Arbor GUI, a graphical front-end to Arbor; nmlcc, a tool to generate 

optimised simulations from a description in NeuroML; and preliminary results from the BrainScaffoldBuilder, which 

benchmarks Arbor favorably to competing simulators.

METHODS

1. Packaging and testing

Ensuring reproducible results is aided by using tools and practices common in the development of professional software. 

Arbor’s source code is publicly available and uses the commonly employed CMake build system. Unit tests covering Arbor’s 

functionality are executed upon every code addition to prevent bugs and regressions. Arbor is available as a Python and 

Spack package. The Spack package is part of the Ebrains Lab. The Arbor GUI has automated builds for MacOS and Linux. We 

publish an integrated validation and benchmarking framework, called NSUITE, in lockstep with the Arbor library and is used 

to spot performance regressions and investigate scaling behavior.

2. Accessibility

The Arbor GUI lets the user interactively design a detailed cell. Morphologies can be loaded from a variety of formats, 

and helps the user visualize regions and location sets where e.g. ion dynamics are painted or bio-physical properties set, and 

helps with placement of e.g. probes. The result can be exported in Arbor's internal format for simulation elsewhere, such as 

HPC. The Arbor Playground Arbor compiled to the web, making Arbor accessible to anyone with a web browser, and comes 

preloaded with select published models.

3. Ecosystem integration

To make more models available to scientists, we designed nmlcc, a translator from NeuroML2 to Arbor’s native format(s). It 

leverages the full-simulation description of NML2 to provide optimised outputs, resulting in significant performance 

improvements. Arbor is an officially supported backend for BluePyOpt [8], a commonly used package for parameter 
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optimization.

4. Features
Some recently added features include support for inhomogeneous parameters: selected parameters can be scaled by a 

function evaluated along a cell. Stochastic differential equations (SDEs) lets users introduce sources of white noise. 

Plasticity modelling is improved by providing resumable simulations, connection table modifications, and an 

efficient implementation for dendritic diffusion of ions, which play a role in synapse plasticity.

RESULTS AND DISCUSSION

A published study used the L2L framework to conduct a parameter optimisation study using Arbor [9]. Arbor also became a 

supported back end in the Brain Scaffold Builder, enabling the simulation of a series of published models [10]. In 2022 a 

user group around plasticity was kicked off, which will steer Arbor development to support planned original research in the 

near future. One planned study will investigate structural plasticity: how do spines grow and decay, and in turn 

modulate the strength of a synapse, as function of ion concentration and endpoints distance? Another planned study has 

as goal to reproduce evoked EEG responses over the primary somatosensory cortex, measured for known vibratory 

stimuli in clinical studies.

The Arbor source code now counts contributions from 30 persons, about half of which are people from outside the 

development team. The Python package is downloaded ~300 times per month and the Arbor community space sees 

daily discussions, pointing to increased use and a community forming with plans to scale their ambitions and 

simulations out.
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INTRODUCTION/MOTIVATION

Decision-making refers to making a perceptual or motor choice between alternatives. It requires 

anticipating consequences of each choice. Previous studies on decision-making focused mostly on 

paradigms with immediate consequences. However, in many cases, decision-making with consideration of 

long-term benefits is important for survival of species. This requires control over future planning to identify 

optimal decision-making strategy. To study behavioural background of such mechanisms, we applied a 

visual discrimination experiment on human (20 years old female) and monkey (16 years old male). 

Challenge is to model induced dynamics at behavioural level.

METHODS

The Adaptive Exponential (AdEx) mean-field framework1 describes the averaged neuronal population 

behaviour modelled by AdEx network. In the case of cerebral cortex, AdEx networks are used to model two 

cell types: Regular Spiking (RS) neurons, displaying spike-frequency adaptation as observed in excitatory 

pyramidal neurons, and Fast Spiking (FS) neurons, with no adaptation, as observed in inhibitory 

interneurons. AdEx networks are high dimensional, complex and difficult to analyse. AdEx mean-field

models are low dimensional, simpler and easier to analyse compared to networks, yet they 

approximate closely the network dynamics, motivating our choice of model.

We extend the AdEx mean-field framework to model two networks of excitatory-inhibitory neurons, 

representing two cortical columns, and interconnected with excitatory connections contacting both RS and 

FS cells (Figure 1). Intercolumnar excitation introduces bi-columnar competition in which winning column makes 

the decision. This excitation is balanced by intracolumnar inhibition. This is different from previous models2, 3, 

which postulate intercolumnar inhibition.
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Figure 1: AdEx mean-field double-column model with plasticity. Columns vote for stimuli A or B. They are composed of excitatory (e) 

and inhibitory (i) populations. Arrow and dot ended lines denote excitatory and inhibitory connections, respectively. Plasticity 

introduces bias S initialized by reward R or loss L at the beginning of each trial. The columns receive stimuli A and B biased by S.

Experiment task is based on maximizing total reward provided at the end of each episode consisting of two trials. 

The choices are two different icons. They are randomly generated for each trial and projected on 

computer screen. The reward at the end of the episode depends on the coherency between choices of 

the subject and pre-set strategy. A reward-driven plasticity allows the model to learn the implemented 

strategy, as well as subject exploratory behaviour.

RESULTS AND DISCUSSION

We compare simulations to human and macaque data in terms of performance and reaction times. 

Quantification of simulation and experiment data is done based on statistical measures of performance and 

reaction times.

Novelties are several. Firstly, it provides biophysical ground for simpler phenomenological models proposed 

for similar decision-making tasks. It is directly linked to biological machinery observed in RS and FS cell 

populations. Secondly, it is based on biologically plausible intercolumnar connectivity. Finally, it is the first 

time that AdEx mean-field framework is applied to a cognitive task.

This model can produce neurophysiological dynamics of decision-making, proposing two future 

perspectives. The first is to apply it to multiarray recordings of decision-making macaque brain. The second 

is to extend it to multiple cortical columns, enabling implementation to whole-brain simulator The Virtual 

Brain.
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Introduction

During slow wave sleep (SWS) we are unconscious and disconnected from the outside world, 
while when we wake up, we are conscious of ourselves and the world around us. 
Notwithstanding, from a network dynamics perspective, these states are rather different: 
while SWS is a highly synchronous activity, the awake state is characterized by desynchronized 
dynamics [1]. However, what are the mechanisms driving the transition between these rather 
different functional brain states? In the current study we investigated one mechanism that is 
critical for the sleep to wake transition to occur in the cerebral cortex network: the blockade 
of muscarinic-sensitive K+ current (M-current) by cholinergic action. We sought to determine 
the impact of M-current on cortical dynamics during spontaneous slow oscillations (SO), as 
well as its interaction with network excitability. We carried out this investigation both in 
experiments, using visual cortical slices, and in a biophysical detailed recurrent neuronal 
network. Together, our results indicate that M-current is highly implicated in the maintenance 
of the slow cortical dynamics, and its blockage results in a progressive elongation of the periods 
of persistent activity that dominates over the regular presence of silent periods, resembling 
the transition to wake brain states. Overall, our work bridges one ionic channel with network 
modulation, providing a mechanistic insight into the network dynamics of awakening and 
opening the door to link microscopic to whole brain dynamics.

Methods

Local field potentials (LFP) were recorded using a 16-channel flexible microarray from visual 
cortex slices. Slices were placed in an interface-style recording chamber and superfused with 
an equal mixture of sucrose solution and artificial cerebrospinal fluid as in [2]. XE991 was used 
as a specific M-current blocker. For the analysis of spontaneous activity, the MUA signal was 
used (LFP filtered between 0.2-1.5kHz), once it is a reliable estimation of the population firing 
rate [3]. For the recurrent network model, we reproduced a model of slow oscillations 
proposed in [4]. In it, the M-current was newly integrated in the excitatory neurons. To simulate 
the M-current blockage (increment) in the model we parametrically reduced (increased) its 
maximal conductance. We also regulated network excitability by controlling the leak currents 
conductance.

Results and Discussion



In this study we found that M-current has an important role in the mechanisms controlling 
the Up states, specifically modulating its persistence and termination. Blocking the M-current 
resulted in a prominent elongation (ca. four times) of the Up states, while the Down states 
hardly varied in duration (Fig. 1, top). The population firing rate was also increased during 
both Up and Down states, reflecting the increased excitability of the network. The cortical 
activity under the M-current blockage was like the so-called microarousals that occur as a result 
of activation of the arousal systems in the sleep-wake transition [5]. In our computational 
model we replicated the experimental results (Fig. 1, bottom) and showed that there is a linear 
relation between the firing rate and up state duration. Furthermore, we showed that for an 
increment in the M-current higher than 20%, the network was unable to show spontaneous 
activity. Looking at the individual neuronal level, we observed that just the reduction of this 
current induced a radical change in network dynamics, going from regular and synchronous 
SO to more prolonged and desynchronized firing periods, and effect that was more striking 
for states with higher network excitability. In conclusion, since cholinergic action in the 
cerebral cortex is critical to induce the transition from sleep to awake, our results suggest a 
relevant role for M- current blockage by muscarinic action into this transition. On the 
contrary, the physiological activation of the M-current plays an important role in maintaining 
a hyperpolarized neuronal membrane potential and facilitating, in the absence of cholinergic 
inputs, the expression of slow waves in the cortical network.

Figure 1 Effect of M-current blockage on spontaneous slow oscillations in cortical slices (LFP, top) and in a recurrent 
network model (bottom). Notice the prominent elongation of periods of activation (Up states) in both experimental 

and simulated data.
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INTRODUCTION

TheVirtualBrain (TVB) [1] is a computational framework for modelling and simulating whole brain dynamics at the level of 

large-scale networks, which allows for the integration of structural and functional neuroimaging data [2]. The Neurorobotics 

Platform (NRP) [3] is a set of software tools to prepare, execute and monitor simulations of virtual agents interacting in a 

closed loop with their environment. The latter can be implemented in game engines, such as Unity, or in simulation 

environments such as MuJoCo or Gazebo [4]. We present a first demonstration of an embodied virtual brain simulation 

that exhibits a phase transition in bimanual sensorimotor coordination following the classical Haken-Kelso-Bunz (HKB) 

model [5], via closed-loop co-simulation of TVB and Gazebo in the NRP.

METHODS

We embedded the bimanual coordination task dynamics into a TVB network model by (a) augmenting the network with two 

nodes representing the Gazebo fingers, (b) selecting a HKB like oscillatory model [6] for the dynamics of each network node 

and their mutual coupling, (c) setting directed connections implementing the loop Left Motor Cortex (LMC) -> Right Finger 

(RF) -> Left Sensory Cortex (LSC) -> Right Motor Cortex (RMC) -> Left Finger (LF) -> Right Sensory Cortex (RSC) -> LMC (Figure 

1), and (d) reducing the weights of all other brain connections and removing all time delays to the TVB time step of integration 

(0.1 ms). At every time step of simulation, the activity of the motor cortices determines the position and velocity of the 

Gazebo fingers, acting as motor commands, whereas the actual position and velocity of those fingers update the state of 

the respective TVB RF and LF nodes (by overwriting it), which then couple to the sensory cortices, acting as proprioception, 

eventually directed to the motor cortices. The oscillations go through three successively increased frequency plateaus 

(by modifying accordingly a frequency parameter), the middle of which corresponds to the critical frequency that 

destabilizes the antiphase mode of coordination.

mailto:dionysios.perdikis@bih-charite.de


The NRP platform implements a hub-and-spokes architecture with NRP Core as the hub and distributed “engines” for 

constituent simulators, employing a client-server paradigm for communications. The NRP core (a) orchestrates the co-

simulation of the TVB and Gazebo engines, and (b) carries out the data exchange, as well as mathematical transformations 

of the data via transceiver functions (in Python).

Figure 1: Model architecture. TVB network augmented with two Gazebo fingers. Task related directed connections shown as thick arrows 

in blue (green) for right the (left) finger.

RESULTS AND DISCUSSION

The co-simulation starts with initial conditions chosen to result to an antiphase mode of bimanual coordination. During the 

middle (critical) frequency plateau a phase transition takes place to the inphase coordination mode spontaneously, with 

the assistance of noise (Figure 2; see also [7] for an animation).

Future work can increase the biological realism of both the brain dynamics (e.g., inducing the phase transition due to 

interhemispheric crosstalk and respective time delays [8]), and on the side of the robotic fingers’ biomechanics. Such a co-

simulation framework allows researchers to perform in-silico experiments of brain and behaviour interactions for 

testing hypotheses or making predictions e.g., for lesions or perturbations, while integrating neuroimaging, 

neuromuscular and behavioural data.



Figure 2: Model simulation. Co-simulation time series exhibiting a phase transition from an antiphase to an inphase mode. Top: Finger 

position amplitudes and normalized phase difference (black) for three frequency plateaus Middle (bottom): Motor and sensory cortices’ 

activities, and finger positions (see legend for line styles) corresponding to the red (magenta) inserts of the top panel, exhibiting 

antiphase (inphase) synchronization, respectively. Right (left) finger circuit showed in (blue) green.

Keywords: TheVirtualBrain, Neurorobotics Platform, Gazebo, Haken-Kelso-Bunz model, bimanual coordination, phase 

transition, Co-Simulation, embodied brain
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INTRODUCTION/MOTIVATION

The brain is an inherently multi-scale and highly complex system. The work in the Human Brain Project (HBP) has 

resulted in a set of simulation engines which cover a broad spectrum of levels of description ranging from 

morphologically detailed to the whole brain level. While the efficient simulation at each scale is vitally 

important, it is not sufficient to address the rather complex research questions such as how to study the global 

brain behavior while depending on the local morphological details. Such research questions can be 

feasibly addressed by connecting the multiple simulations of different spatial and temporal scales. However, 

this results in complex workflows with multiple components to be executed in parallel. These workflows 

introduce different challenges such as deployment and resource management on HPC systems.

Here, we introduce the Modular Science (MSC) framework which addresses these challenges with a set of 

microservices. To execute the complex multi-scale co-simulation workflows on HPC systems, the MSC framework 

deploys different simulators operating across different brain scales, together with visualization, data 

transport and analysis tools. It provides a handle on the steering, management of the workflow execution, the 

overall system health and the individual application status during runtime for provenance and failure tracking. 

Another salient feature of the framework is its capability of monitoring the computational resource usage 

by individual applications in a non-invasive way and with
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negligible overheads on their performance. A set of common APIs and standards are defined in order to ensure 

the interoperability, reusability and to smoothly integrate the MSC framework with different EBRAINS 

tools [3]. For example, the monitoring service can be used with any EBRAINS tool using a coupling interface 

complying with the API of the service.

The framework currently supports the specific examples of implementations including the two-way co-

simulation workflow of The Virtual Brain (TVB) [1] and NEST [2] simulators using ELEPHANT library

[4] for in transit data analysis. The following use-cases are identified as the target workflows for the 

Modular Science framework:

1. Two-way coupling of NEST & TVB: Parallel simulations of whole-brain behavior in TVB constrained 

by detailed local behavior in NEST of selected brain regions.

2. NEST-Arbor co-simulation: Enabling the description of higher-level network architecture in NEST and 

local behavior of selected regions in Arbor[3].

3. In-situ infrastructure: In-situ data analysis and visualization and common coupling 

infrastructure.

4. LFPy [7] as a one-way co-simulation: Feeding NEST spiking results into a simplified Arbor simulation 

producing current dipoles fed into an analysis framework to compute EEG & LFP predictions, and 

extension with TVB coupling.

METHODS

Architecture: Modular structure, micro-services like set of independent applications Technology 

stack: Python, Bash, XML, JSON, ZeroMQ, MPI, UNIX, PSOIX APIs Platforms: multi-core CPUs, HPC 

cluster

RESULTS AND DISCUSSION

Currently, the framework supports the deployment and the execution of use-case-1 (Two way coupling of TVB-

NEST) on local systems such as laptops and the JUSUF/JUWELS supercomputers [5]. In this use- case, the Brunel-Alpha 

balanced network [6] is run as co-simulation with NEST and TVB, both with and without monitoring of resource 

usage to test the efficacy of the framework and the impact of monitoring on performance. We found that 

monitoring of the resources usage has no impact on the performance of the simulators. The other use-cases 

are currently being codeveloped and integrated in MSC. We are also aiming to run the high scaling co-simulations 

for different brain models available in the simulators.
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INTRODUCTION/MOTIVATION

A variety of software simulators exist for neuronal networks, and a subset of these tools allow the scientist to model 

neurons in high morphological detail. The scalability of such simulation tools over a wide range in neuronal networks sizes 

and cell complexities is predominantly limited by effective allocation of components of such simulations over 

computational nodes, and the overhead in communication between them. In order to have more scalable simulation 

software, it is important to develop a robust benchmarking strategy that allows insight into specific computational 

bottlenecks for models of realistic size and complexity.

METHODS

In this study, we demonstrate the use of the Brain Scaffold Builder [1] as a framework for performing such 

benchmarks. We perform a comparison between the well-known morphologically detailed simulator NEURON [2], and 

Arbor [3], a new simulation library developed within the framework of the Human Brain Project. The BSB can construct 

identical neuromorphological and network setups of highly spatially and biophysically detailed networks for each 

simulator. This ensures good coverage of feature support in each simulator, and realistic workloads. After validating the 

outputs of the BSB generated models, we execute the simulations on a variety of hardware configurations consisting of two 

types of nodes (GPU and CPU). We investigate performance of two different network models, one suited for a single 

machine, and one for distributed simulation. We investigate performance across different mechanisms, mechanism 

classes, mechanism combinations, and cell types. RESULTS AND DISCUSSION
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Our benchmarks show that, depending on the distribution scheme deployed by Arbor, a speed-up with respect to NEURON 

of between 60 and 400 can be achieved. Additionally, Arbor can be up to two orders of magnitude more energy efficient.

Figure 1 - Left: Histogram of the speed-up factors for Arbor with respect to NEURON of 46,939 mechanism combinations 

inserted in a single compartment. Each combination was repeated 10 times. The mean is used. Center: Kernel density 

estimates of the maximum speedup of 3 groups of mechanisms: mechanisms with nonlinear dynamics (labelled 

Nonlinear), such as cdp5, mechanisms with high amounts of RANGE variables (RANGE vars), and all other mechanisms 

lacking extraordinary NMODL features (Regular). Right: Comparison of the timestep duration for NEURON and Arbor to 

solve biological timesteps of the cerebellar single cell models.

During analysis of the mechanism benchmarks several separate distributions were observed in a multimodal distribution. 

Taken apart they reveal that Arbor speeds up simulation of most mechanisms between 10 to 25 times, while more 

specific cases with aberrant properties such as high amounts of RANGE variable declarations, or complex nonlinear 

dynamics, could only be sped up 5 times (Fig 1).

Table 2 - Benchmark results for the large network of 30,000 cells running on multiple nodes. † corresponds to the 

configurations optimized for and allocated to a single socket. If no error is given, it was below the measurement 

threshold. Highlighting indicates the best performance in each section.



Under these realistic large-scale conditions, utilizing the full spectrum of strenuous features available in each simulator, 

Arbor reached speedups of x10 on CPU and x30 on GPU. This speedup is comparable to the speedup of NEURON versus 

CoreNEURON under similar conditions [4], and is a good, yet indirect, indication that the simulators are on par in terms 

of performance (Fig 2).
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MOTIVATION

In the recent decades, an increasingly popular approach for the problems of neuroscience is the in-silico method [1]. This 

method allows exploring the behaviour of neural structures in ways that are not practical or even feasible to do 

experimentally.

In-silico neuroscience relies on high-performance computing to take on increasingly complex neural models, and unlock 

insights into the subtle behaviours that they exhibit.

Presently, computational tools for in-silico neuroscience come in two types: general-purpose neuro-simulators and model 

class-specific ones.

General-purpose simulators can run a rich variety of neuron models, but computational performance is limited by their 

generality [2].

On the other hand, specialised simulators make extreme speeds and scales of simulation possible, but they work on a specific 

class of neural models each [3] and their custom and highly optimised internal data formats make it difficult for end-users 

to customise the parameters for each run.

METHODS

We propose a methodology for making specialised simulators accessible by neuro-modellers, through the use of open data 

formats and some simple guidelines on how to make the simulators detect compatibility with, and run, neural models in 

these formats.

RESULTS AND DISCUSSION

We demonstrate our work through an adapter from the NeuroML modelling language to a high-performance 

reconfigurable hardware engine [4] previously developed in our lab. Performance is identical to when 

programming the simulator's native data format, but the engine can now readily run all NeuroML models that it can 

support, thanks to the adapter.

mailto:s.panagiotou@erasmusmc.nl


Keywords: high performance computing, simulation, in silico experiment, spiking neural networks, reconfigurable 

computing, accelerated computing, software, tooling, NeuroML

REFERENCES

1. Markram H, Meier K, Lippert T, et al. Introducing the Human Brain Project. Procedia Computer Science. 2011;7:39-
42. doi:https://doi.org/10.1016/j.procs.2011.12.015
2. Wang RM, Thakur CS, van Schaik A. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator. Frontiers in 
Neuroscience. 2018;12. doi:https://doi.org/10.3389/fnins.2018.00213
3. A. Pastur-Romay L, B. Porto-Pazos A, Cedron F, Pazos A. Parallel Computing for Brain Simulation. Current Topics in Medicinal 
Chemistry. 2017;17(14):1646-1668. doi: https://doi.org/10.2174/1568026617666161104105725
4. Miedema R, Smaragdos G, Negrello M, Al-Ars Z, Möller M, Strydis C. flexHH: A Flexible Hardware Library for Hodgkin-
Huxley-Based Neural Simulations. IEEE Access. 2020;8:121905-121919. 
doi:https://doi.org/10.1109/ACCESS.2020.3007019



94. Modernisation of NEURON Simulator toolchain 
and Deployment on EBRAINS Platforms

Ioannis Magkanaris1*, Jorge Blanco Alonso1*, Alexandru Săvulescu1, Olli Lupton1, 
Nicolas Cornu1, Omar Awile1, Christos Kotsalos1, Matthias Wolf1, Michael L. Hines2, 
Pramod Kumbhar1, James Gonzalo King1

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
2 Department of Neuroscience, Yale University, New Haven, CT, United States

*e-mail-address of corresponding authors: ioannis.magkanaris@epfl.ch, jorge.blancoalonso@epfl.ch

INTRODUCTION/MOTIVATION

NEURON is a widely-used simulation environment for computational neuroscience research. In the pursuit of 

simulating substantially larger and morphologically detailed neuronal circuits built within HBP, the Blue Brain 

Project (BBP) has been collaborating with Yale University to transform the NEURON simulator   into   a   

modern,   efficient,   scalable   and   easy-to-use   framework.

METHODS

During the past 2 years, the NEURON developer community has undertaken various initiatives to future- proof the 
simulator. We have significantly improved NEURON's overall code organisation, testing, documentation and 
build system to increase the code's software sustainability. Also, we have fully integrated the CoreNEURON 
simulation engine within NEURON source code. Additionally, a modern source-to-source compiler (NMODL) 
capable of targeting both CPUs and GPUs is now available. We have introduced Python wheels for the NEURON 
package, easing the installation of the toolchain in various computing platforms. Finally, we have broadened the 
support of CoreNEURON, enabling the GPU execution of multiple publicly available NEURON models [1,2] and 
improved the performance of the CPU and GPU execution using the NMODL translation framework [3]. While 
developing all of the above we have revised the contribution practices with extensive CIs and enhanced the user 
and developer documentation. All these new features and improvements are made available on multiple 
EBRAINS platforms [4] via a Spack package manager-based [5] software deployment workflow.

RESULTS AND DISCUSSION

As part of this work, we present the performance of two large-scale models developed within HBP using different 
multi-CPU and multi-GPU configurations. We showcase our Spack-based deployment workflow on various HBP 
platforms including Piz-Daint, JUSUF and Marconi100. We also show how NEURON can be easily used on private 
cloud infrastructure as well as EBRAIN’s collaboratory. Moving forward, we will discuss how the core data 
structures of NEURON are being updated with a tighter and seamless integration of CoreNEURON.
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This transformation and advancement of NEURON was achieved through the joint efforts and collaboration of 
members of the NEURON developers group and users [6]. Since 2020, these members organise monthly meetings 
to discuss topics for the improvement of NEURON and better enable researchers to further their goals. We 
encourage others to attend to present their ideas and help drive the roadmap for future features and 
capabilities.
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INTRODUCTION
Simulating brain-scale models requires parallel computers to provide enough memory to represent network 
connectivity and efficient instantiation of complex network connectivity on massively parallel computers. While scalable 
data structures and algorithms for storing and accessing connections in parallel are available [1 -3], efficient parallel 
instantiation of such networks has received less attention. Network connectivity can be defined either rule-based [4] or 
through explicit tabulation of connections, e.g., using the SONATA format [5]. Even for models of limited size and 
complexity, such as a model of the mouse cortex with more than 9 million point neurons connected by 25 billion synapses, 
SONATA specification files comprise nearly 500 GB of data in mostly binary format (HDF5). We present here an 
implementation of direct support for efficient instantiation of networks from SONATA specifications in the NEST simulator 
[6] as a result of the HBP NEST-SONATA infrastructure voucher.

METHODS
NEST uses a hybrid parallelization strategy combining MPI processes and OpenMP threads, representing connectivity 
primarily on the thread updating a connection target. Files representing large-scale networks need to be read in chunks 
due to memory constraints; we implement this using HDF5 hyperslabs of configurable size. Since HDF5 does not provide 
support for thread-parallel reading, only one thread per MPI process reads connectivity data, before all threads create 
connection in parallel. We explored two reading schemes:

i. Read datasets sequentially as blocks of contiguous hyperslabs. All MPI ranks thus read all connection data, even 
though only 1/Mth of all connections will be stored on any one of M MPI processes.

ii. Using SONATA files with connections sorted by targets and additional index tables, read on each MPI rank only 
hyperslabs containing data relevant for that rank. In this case, hyperslabs are not contiguous and are read in an 
irregular pattern.

We tested and benchmarked NEST-SONATA on three network models provided by the Allen Institute: a toy model with 300 
point neurons, a mouse V1 model [7] and a yet unpublished mouse cortex model based on the Allen Mouse Brain 
Connectivity Atlas [8] and the Blue Brain Project’s instantiation of cortical connections [9].
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RESULTS AND DISCUSSION
Our implementation of SONATA support for NEST is currently under public review1. The implementation has been verified 
against BMTK [10] with the 300 point neuron and V1 models. NEST-SONATA instantiates the V1 model in about 20 
seconds compared to BMTK’s 80 seconds in simulations with 8 OpenMP threads on a laptop.

On an HPC system with 32 compute nodes (MPI ranks) each providing 128 CPU cores (threads; AMD EPYC Rome; JUSUF, Jülich 
Supercomputing Centre), using the sequential reading scheme, the mouse cortex model was instantiated in approximately 
20 minutes. Performance appears to be constrained by data transfer from the supercomputer’s file system. The rank-
specific reading scheme performed so much worse that we could not complete any benchmarks with an acceptable use of 
compute time and energy. This applied for reading one hyperslab at a time as well as reading unions of hyperslabs. This 
result is surprising, since the rank-specific scheme should on each MPI rank read only 1/32 of the data volume read by the 
sequential scheme. We suspect that out-of-order reading from hyperslabs encounters performance problems in the 
HDF5 library.

Further acceleration of network instantiation from explicitly tabulated connections may require replacing HDF5 with data 
formats more suitable for efficient MPI- and thread parallel reading, e.g., based on SIONlib2, which is already used by NEST’s 
highly efficient parallel spike recording backend.
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INTRODUCTION/MOTIVATION

Simulation of neuronal networks has steadily advanced and now allows for larger and more complex models. However, 

scaling simulations to such sizes comes with issues and challenges.

Especially the amount of data produced, as well as the runtime of the simulation can be demanding.

Often, it is not even possible to store all data on disk, and users might have to wait for a long time until they can process 

the data.

A standard solution in simulation science is to use in-transit approaches [8].

In-transit implementations allow users to access data while the simulation is still running and do processing in parallel 

outside of the simulation.

This allows for early insights into the results, early stopping of simulations that are not promising, or even steering of the 

simulations.

Existing in-transit solutions, however, are often complex to integrate into the workflow as they rely on integration into 

simulators and often use data formats that are complex to handle.

This is constraining in the context of multi-disciplinary research conducted in the HBP as such an important feature should be 

accessible to all users.

Especially domain scientists from neuroscience and visualization providers should be able to leverage in-transit processing.

To remedy this, we developed Insite [1,2], a pipeline that allows easy in-transit access to simulation data of 

multiscale simulations conducted with TVB [6], NEST [4], and Arbor[5].

METHODS

Insite is designed around providing users with an interface that is easy to integrate into existing workflows and tools.

Two achieve this, Insite uses a modular and tiered architecture consisting of simulator modules and a central access 

node.
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The simulator modules are provided for TVB, NEST, and Arbor and are responsible for collecting the raw data from the 

simulation and providing them to the access node.

Simulator modules are designed to be as unintrusive as possible and easy for all users to integrate into existing simulation 

scripts.

The access node acts as a single point of contact for users and provides the data of all simulators and simulator instances 

from a single source.

Insite allows access to the data via two paradigms.

A push-oriented paradigm via WebSockets where the user gets new data pushed into their application whenever new data 

is available.

Secondly, users can use a pull-based approach based on an HTTP REST API to query data on demand.

The data returned in both cases can either be encoded as JSON or flatbuffers. JSON 

offers a human-readable representation with broad support.

Flatbuffer's binary encoding provides a more performant alternative to JSON.

By offering these standard protocols and data formats, users can easily use the Insite Pipeline in various 

programming languages and technologies, as plenty of libraries for this are available.

The API provides a variety of parameters that can be used to filter the data making accessing of the data as easy as 

possible.

Thus, making it easy for users to access the data for further processing like analysis or visualization. RESULTS AND 

DISCUSSION

With a focus on ease-of-integration and ease-of-use, Insite is accessible to many developers and users.

The Pipeline was successfully integrated into the ViSimpl Visualization Tool [3] and NEST Desktop[7] to add in- transit 

capabilities, allowing users to get early feedback on their simulations.

Due to the design of Insite, both tools could integrate it into their desktop- and web applications.

Especially considering the emerging eco-system of web-based solutions in the context of EBRAINS, Insite provides a big 

advantage over classical in-situ/in-transit approaches.

The modular architecture additionally allows extending the access node to provide more data, e.g., metrics or pre- processed 

data from other sources.

Thus, Insite enriches the capabilities of the computational neuroscience community.

Keywords: in-transit, in-situ, simulation, visualization, computational science, multiscale simulation
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INTRODUCTION/MOTIVATION
The main treatment option for drug-resistant epilepsy patients is resective surgery, with a failure rate of 
about 50%. Prior to surgery, brain stimulation is applied through invasive-EEG electrodes for functionality 
mapping of candidate regions. It is also used to delineate the epileptogenic zone by inducing seizures. 
Clinicians stimulate using an empirical approach which costs an amount of time with patients’ additional 
suffering. Most stimulation parameters do not induce seizures or generate functional effects. We aim to 
find optimal stimulation parameters that induce seizures through a personalized modeling approach.

METHODS
We virtualized 5 drug-resistant epilepsy patients which have undergone surgery (3 male, 2 female, age 
33±14, Engel class I/II). These patients had spontaneous seizures, stimulated seizures and interictal 
recordings. We build personalized whole-brain models based on patient- specific MRI, diffusive-MRI and 
CT-scan1. To simulate brain activity, we use the Epileptor2 model which captures seizure dynamics. We 
extended this model for brain stimulation effects on seizure onset.

Based on theories of reduced resilience of the epileptogenic zone 3,4 and studies which relate the 
increase in spike frequency and oscillations when an external perturbation is applied to heightened 
excitability 5,6, we studied parameters in the Epileptor which influence the dynamics of the seizure-like 
state, in particular, the parameter m 7. We hypothesized that, for stimulation induced seizure, a build-up 
of ion imbalances reaches a seizure threshold followed by an epileptic seizure. This has also been shown 
experimentally 8,9,10, however there is no consensus on the precise biophysical mechanism of ion 
exchanges that lead to seizure onset. We modified the equations by converting the phenomenological 
parameter m to a variable, which accumulates the ionic imbalance effects from the external stimulus. 
This accumulation when reaching a defined seizure threshold, destabilizes the system by pushing it into 
a seizure-like state. By modeling the effects of stimulation parameters applied clinically, we study its 
effects on network dynamics.

RESULTS AND DISCUSSION
We validated our model against empirical recordings where brain stimulation was applied. For 
personalized whole-brain network models, we generate different seizure dynamics by changing only 
stimulation parameters. We compared the spatio-temporal patterns of simulated-SEEG
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signals against empirical data. After validating the personalized whole-brain models, we designed the 
optimized stimulation parameters. These parameters include: stimulation site, stimulation 
amplitude, brain connectivity, brain state.

The personalized whole-brain network models can simulate brain stimulation and help better 
understand the effects of brain stimulation for epilepsy diagnosis. In addition, we introduced the 
optimization methods for stimulation parameters.
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INTRODUCTION/MOTIVATION

We aim to use a personalized whole brain network modelling method to aid clinicians in 
planning surgical interventions for patients with drug-resistant focal epilepsy.

METHODS

For each epilepsy patient, we built a patient’s specific whole brain network model. The 
structural scaffold of the patient-specific whole-brain network model is constructed from 
anatomical T1 and diffusion-weighted magnetic resonance imaging. Bayesian inference 
methods sample and optimize key parameters of the personalized model using functional 
stereoelectroencephalography recordings of patients’ seizures. These key parameters 
determine a given patient’s personalized model [1]. We performed virtual resection on this 
patient’s personalized models based on the sampling results of Bayesian inference. We 
compared the results of virtual resection surgery with the outcome of the real surgery. We 
also introduced an optimization method for surgical strategies.

RESULTS AND DISCUSSION

We gave three patients examples of performing virtual surgery using different clinical 
hypotheses and real surgery as well. Then we used optimization methods for the surgical 
strategies. We performed the virtual surgery workflow retrospectively using 40 patients 
with drug-resistant focal epilepsy. These 40 patients had epilepsy surgery with at least 
one-year follow-up outcome. We performed the virtual surgery and compared it with the 
real surgery, which was consistent with the outcome prediction. Based on the personalized 
whole brain network modelling, we optimized the best surgery strategy. For each patient, 
we rank the different surgical strategies by the statistical metrics.

Personalized whole brain network modelling can make a prediction on the outcome of surgery 
and is able to suggest the surgical strategies by ranking the statistical metrics.
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INTRODUCTION/MOTIVATION:

Epilepsy is one of the most common severe neurological dis- order characterized by likelihood for the brain to 
enter seizure states [1]. Prompt and efficient treatment often requires a prior knowledge or predictability, when 
and where seizures are likely to occur. Developing prediction strategies is extremely challenging due to the patient- 
specific causes of seizures, and the difficulty in obtaining data from longitudinal study. Interictal spikes(IS) are 
observed in 1% of non-epileptic population and around 70 to 90 % of epileptic subjects before and after seizure. 
The interictal discharges are often observed transient changes translating as spikes captured through the sEEG 
implants before the onset of seizure. The spikes are usually distinguishable as prominent sharp amplitude feature 
occuring for a short duration of time.

METHOD:

The cause of source level activation pattern and the associated physiological changes is often not known. In this 
work we attempt to understand the underlying physiological phenomenon using the epileptor model [2, 3]. An 
extension of this model to connect the epileptic state with the resting state is developed in [4]. The aim is to capture 
the bursting phenomenon at the source level through the model and translating up to the sensor level i.e at the 
sEEG level. A relative comparison gives an insight and understanding of the co-activation pattern of the brain 
regions recruited during an occurrence of seizure in an epileptic brain. To do so it becomes essential to learn more 
about the evolution and transition of the system from interictal or spiking state to a fully evolved seizure or epileptic 
state. In this work we tried to quantify the phenomenon using a fractal feature over the LFP network. The 
simulations were done using the neuro informatic platform The virtual brain (http://www.thevirtualbrain.org). 
Anatomical MRI data preprocessing and structural reconstruction was performed us- ing an in house pipeline for 
automatic processing of multimodal neuroimaging data based on publicly available neuro-imaging tools being 
customized for TVB (https://github.com/the-virtual-brain/tvb-recon) [5]. The connectome

Fig 1: TVB based processing and analysis pipeline.
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was obtained using the Virtual Epileptic Patient (VEP) parcellation scheme. Once the connectome is obtained 
the spiking phenomenon at the source level is being simulated using the model described in [4]. This is 
followed by estimation of a fractal features namely Higguchi Fractal Dimension (HFD). The complete pipeline as 
shown in Fig 1 summarizes the schema of current work.

RESULTS AND DISCUSSION:

Fractals dimensions of Dynamical Systems:

Fractals are sets that exhibit self similarity in all levels of magnification and they have noninteger dimension 
that is typical of strange attractors. Roughly speaking, self similarity means that a set remains qualitatively 
similar in its spatial characteristics under contraction or magnification. The simplest (first order) geometric 
property of a fractal is usually measured by its fractal dimen- sion, also called the capacity dimension. Thus 
fractal based analysis can give us more insight about a systems transition from one state to another. In our 
case which is the switch from Interictal state identified by Interictal Discharges to Epileptic seizure state. Here 
we have shown in Fig 2, the evolution of the features using Higuchi Fractal Dimension(HFD), which in turn gives 
us a predictability of the hidden repertoire in the system.

Figure 2: The Left figure shows: A simulated Interictal Discharge in the Interic- tal Zone followed by an 
Epileptic Seizure. The right figure shows the evolution of the HDF parameter when measured over a 50 sec 
simulation with a 50 msec epoch.

Keywords: Epilepsy, Whole brain network simulation, Fractals, Clinical features.

ACKNOWLEDGEMENTS: Funding received from HBP and INSERM are thankfully acknowledged.

REFERENCES

[1] Duncan JS, Sander JW, Sisodiya SM, Walker MC., “Adult epilepsy. Lancet. 2006 Apr 1;367(9516):1087- 
1100. doi: 10.1016/S0140- 6736(06)68477-8. PMID: 16581409.
[2] Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C, “On the nature of seizure dynamics.," Brain 
137:2210–2230, 2014.
[3] El Houssaini K, Bernard C, Jirsa VK. The Epileptor Model: A Systematic Mathematical Analysis Linked to the 
Dynamics of Seizures, Refractory Status Epilepticus, and Depolarization Block. eNeuro. 
2020;7(2):ENEURO.0485-18.2019. Published 2020 Mar 24. doi:10.1523/ENEURO.0485-18.2019.
[4] Courtiol Julie, Guye Maxime, Bartolomei Fabrice, Petkoski Spase and Jirsa VK, “Dynamical Mechanisms of 
Interictal Resting-State Func- tional Connectivity in Epilepsy,", Journal of Neuroscience, 40 (29) 5572- 5588, 15
July 2020.
[5] Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK (2016), “How do parcellation size and 
short-range connectivity affect dynamics in large-scale brain network models?”, Neuroimage 142:135–
149.



100. Multiscale Co-Simulation of TheVirtualBrain 
with NEST, ANNachy and NetPyNE (NEURON) 
spiking networks

Dionysios Perdikis1*, Valeriy Bragin1,2, André Blickensdörfer1, Lia Domide3, Michael 

Schirner1, Salvador Dura-Bernal2, Petra Ritter1

1Brain Simulation Section, Berlin Institute of Health & Department of Neurology with Experimental Neurology 

at Charité—Universitätsmedizin, Berlin, Germany
2 Physiology and Pharmacology Department, State University of New York (SUNY) Downstate Health Sciences 

University, New York, USA
3Codemart, Cluj-Napoca, Romania

*dionysios.perdikis@bih-charite.de

INTRODUCTION

TheVirtualBrain (TVB) [1] is a state-of-the art computational framework for modelling and simulating whole brain dynamics 

at the coarse level of large-scale networks, which allows for the integration of structural (structural and diffusion MRI) and 

functional (BOLD/fMRI/PET, EEG/MEG/SEEG/iEEG) neuroimaging data [2]. TVB dynamics results from interactions among network 

nodes, either whole brain regions or local patches of neural tissue on the surface of brain’s grey matter, which are modelled 

by neural mass population models. Spiking neural network simulators aim at modelling and simulating specific systems or 

circuits of the brain at a much finer scale, using neuronal models, either point (as for NEST [3] and ANNarchy [4] simulators), 

or multicompartmental (as for NEURON [5] and its network-building python interface, NetPyNE [6]) as their elementary 

modelling and computational units, generating spiking dynamics. We introduce TVB-multiscale [7], a new Python toolbox 

for Co-Simulation of TVB with all three of the above spiking simulators, which facilitates the implementation in a unified 

and user-friendly manner of so-called interfaces, i.e., data transformations and exchanges between the large-scale activity 

of the whole brain, as modelled in TVB, and neuronal networks extending on several brain regions.

METHODS

TVB and spiking network models are interfaced at the mesoscale of neuronal population dynamics, as the state variables of 

the TVB neural mass models capture the average dynamics of neuronal population activity, and statistical averages of 

the same activity are computed from spiking neural networks. A mapping is formed between TVB state variables and 

populations modelled as spiking networks, to which a label of the brain region of the TVB network, where they reside, is 

assigned. Interfaces are implemented in a modular architecture consisting of (a) “transformer” classes for converting 

average population activity (usually spiking firing rate, as well as current or voltage), to total individual neuronal activity 

(e.g., spike trains) and vice-versa, employing the software Elephant
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[8], (b) “communicator” classes for exchanging data between simulators and transformers, and (c) “TVB proxy” nodes that 

represent TVB brain regions withing the spiking network. “TVB proxies” act either as stimulating devices, which mimic 

the transformed dynamical activity of TVB model state variables and couple to target neuronal populations (Figure 1), 

or as devices, which record the activity of spiking neuronal populations to update

- by overwriting - the respective TVB state variables of the brain region where they reside (Figure 2).

Figure 1. TVB to spiking network coupling.

Figure 2. Spiking network to TVB update.

RESULTS AND DISCUSSION

TVB-multiscale opens the possibility for computational studies, in which a specific neural system that is the focus of the 

scientific inquiry is embedded into a biologically realistic spatio-temporal whole brain context and interacts



with it. TVB provides input to the spiking network differentiated in terms of dynamics (e.g., frequency content) and/or the 

source brain region, this input is processed by the spiking network implementing functions beyond the complexity and 

specificity of the TVB neural mass models, and then the output of the spiking network feeds back to the rest of TVB affecting 

the global brain dynamics. It has already been used to integrate TVB e.g., with an ANNarchy spiking model of basal ganglia 

for virtual Deep Brain Simulation modelling [9], or with a NEST spiking network model of the cerebellum in a study of 

sensorimotor integration of freely whisking mice [10]. Ongoing studies model thalamocortical networks using TVB with 

NetPyNE Co-Simulation. Such use cases further validate the implemented interfaces with neuroimaging and spiking data. 

Future software development will improve the computational efficiency of Co-Simulation, test (unit and integration) 

coverage, and documentation.

Keywords: TheVirtualBrain, NEST, ANNarchy, NetPyNE, NEURON, Co-Simulation, brain network models, spiking neural 

networks, Python, scientific software
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INTRODUCTION

Computational electrical models of biologically detailed cells are valuable to understand the underlying 
electrophysiological dynamics of the neurons. They can be used in circuit models or for in silico 
experimentation in ways that are today impossible with an in vitro cell, and thus expand our understanding 
of the internal dynamics of neurons.

To build an electrophysiological model using the toolset described here, first electrical features are extracted 
from experimental traces of the required cell type. Then an evolutionary algorithm is used to adjust the ion 
channel parameters to fit the in silico features to the features extracted from the experimental traces.

A challenge that the computational neuroscientist faces is the sharing of models with other neuroscientists. 
Multiple tools, formats and standards are used in the field, and using a model from a team that does not 
use the same standard can be a time-consuming hurdle.

METHODS

The electrical model building toolset consists of 4 software packages designed for electrical model building: eFel, 
BluePyEfe[1], BluePyOpt[2] and BluePyMM.

eFel is a tool to compute features from electrophysiological trace data.

BluePyEfe is a tool to extract mean and standard deviations values for features from experimental voltage 
traces. Its latest features include: more robustness to noisy data, allowing it to skip feature values that could 
not be extracted from the trace, the ability to automatically detect the begin and end time of step stimuli 
from experimental trace data when they are not provided, and the ability to use current injection stimuli 
other than step stimuli.
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BluePyOpt is a tool to optimize the electrophysiological parameters of a cell using an evolutionary algorithm, 
aiming to reproduce the experimental features extracted by BluePyEfe.
Developing e-models can take a lot of time and computing resources. Therefore, these models are not 
reoptimized for every morphology in the circuit model. Instead, we test if an existing e-model matches that 
particular morphology 'well enough' using the BluePyMM software.

RESULTS

To make electrical models easier to use by the community, BluePyOpt can now export optimized cells using 
the NeuroML2 format [3], and those cells were able to produce traces similar to the ones produced using 
BluePyOpt.

The traditional optimization method used in the BluePyOpt package is the Indicator Based Evolutionary 
Algorithm (IBEA). We have recently added an alternative method, Covariance Matrix Adaptation (CMA). 
Both a single- and multi-objective version of this algorithm is available. Depending on the use case CMA can 
generate solutions more efficiently than the original IBEA algorithm.

A new version 2.0 of the BluePyEfe has recently been released. It shows more robustness from noisy 
experimental data and is less prone to returning corrupted feature extraction. It can also successfully detect 
the begin and end time of a step stimulus used during the experiment. Finally, the features extracted using 
non-step stimuli have been successfully used to validate optimised electrophysiological parameters.

Originally the BluePyOpt software only supported detailed neuron models that were implemented in the 
Neuron simulator. Recently an integration with Arbor[4] was added to the code, allowing users to choose 
between simulators.

DISCUSSION

This electrical model building toolset already has been used in many publication [5,6]. By providing regular 
updates we try to improve the usability of the software for a wide area of use cases.

Keywords: model building, software, optimisation, single neuron, NeuroML, Arbor, BluePyOpt, BluePyEfe, eFEL, 

BluePyMM
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INTRODUCTION/MOTIVATION Critical network states and neural plasticity are essential for learning and flexible behaviour in 

changing environments [1,2]. However, associative learning perturbs network dynamics via positive feedback. Adjusting 

synaptic weights or synapse/spine numbers in a homeostatic manner, i.e., based on negative feedback mechanisms, help 

restore network stability. Experiments have inconsistent results on the homeostatic nature of spine-number-based 

structural plasticity [3], unlike homeostatic synaptic scaling. Instead, spine loss, formation, or no changes were reported 

under different deprivation protocols, making it challenging to understand the function of structural plasticity.

METHODS We combined in vitro experiments and point neuronal network modelling to assess the interplay of synaptic 

scaling and structural plasticity. Time-lapse imaging of eGPF-expressing CA1 pyramidal neurons was conducted in organotypic 

tissue cultures to track changes in dendritic spine numbers before and after inhibition of AMPA receptors with 200 nM 

and 50 µM NBQX for three-days. Co-simulation of calcium-based structural plasticity and synaptic scaling models in a 

spiking neural network was conducted to study their interrelationship under various activity perturbation. Simulations 

were carried out using NEST [4], part of the EBRAINS infrastructure, and executed on the JUSUF supercomputer at the Jülich 

Supercomputing Centre under a FENIX/ICEI computing time project.

RESULTS AND DISCUSSION By tracking individual dendritic segments, we showed that dendritic spine density is not linearly 

regulated after inhibition of excitatory neurotransmission: partial inhibition of AMPA receptors with 200 nM NBQX 

significantly increased while complete blockade with 50 µM NBQX reduced spine density. Based on these experimental 

results, we established a bi-phasic structural plasticity rule in a spiking neural network. Our computer simulations showed 

that this rule maintains homeostatic properties upon stimulation and permits both spine formation and spine loss depending 

on the degree of deprivation. When silencing-induced spine loss occurs, the product of external stimulation and recurrent 

connectivity jointly determines the network activity and leads

mailto:%2Ahan.lu@brainlinks-braintools.uni-freiburg.de
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to further degeneration or regeneration. Homeostatic synaptic scaling, which instantly modulates the recurrent 

connectivity, accordingly shapes the response of structural plasticity. In summary (Figure 1), we showed that the bi-phasic 

structural plasticity rule is competitive, redundant, and compensatory to the synaptic-weight-based homeostatic 

synaptic scaling rule. We conclude that the robust adaptation of network activity is enabled by calcium concentration-

based integral feedback control, in the forms of structural plasticity and synaptic scaling.

Keywords: homeostatic structural plasticity, synaptic scaling, firing rate homeostasis, organotypic tissue cultures, CA1 

pyramidal neurons, NBQX, spine density, NEST, spiking neural network

Figure 1: Comparison of the homeostatic synaptic scaling rule and biphasic structural plasticity rule. For the synaptic 

scaling rule, up-scaling and down-scaling of input synaptic weights are monotonically regulated by neural activity (i.e., 

intracellular calcium concentration) via a negative feedback control. Therefore, neurons could maintain their activity 

level around a set point value (solid white circle). For the biphasic structural plasticity model, the outgrowth and retraction of 

synaptic elements (axonal boutons and dendritic spines) are also regulated by the difference between their activity level 

and the set point value, but in a more complex manner. Particularly, it displays homeostatic properties when neural 

activity is above the unstable set point (empty white circle) but when the neural activity drops below that value, 

degeneration begins. Therefore, neurons may present homeostatic outgrowth or retraction of synapses and silencing-

induced degeneration. We showed with computer simulations that synaptic scaling and brain stimulation could shape 

network connectivity by modulating neural activity via recurrent inputs or external inputs.
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A disrupted balance between neuronal excitation and inhibition (E/I) lays at the core of neurodegenerative 

physiopathology1, but E/I alterations at whole-brain and functional networks levels are hard to unveil in living subjects. 

Virtual brain modelling2 is now providing a new tool to non-invasively explore intrinsic subject-specific brain features, such as 

the E/I balance3,4. Our work exploits The Virtual Brain (TVB) capabilities to characterize neurodegenerative pathologies in 

terms of subject-specific E/I profile, both at whole-brain level and in multiple functional networks. Our results lay the 

groundwork for customized biomarkers research and define new trajectories for the design of tailored interventional 

workflows.

,
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METHODS

Two cohorts of healthy controls (HC) and dementia patients (Alzheimer’s disease (AD), Frontotemporal Dementia

(FTD)) were enrolled: 1) 15 HC (8f, 64±11y), 15 AD (6f, 70±7y), 15 FTD (4f, 69±7y); 2) 10 HC (6f, 67±3y), 16 AD (13f,

70±8y) and 7 FTD (1f, 69±5y) classified into several phenotypes. Subjects underwent neuropsychological examination 

and MRI data were used to characterize structural and functional connectivity. Brain dynamics were simulated using TVB with 

the Wong-Wang model5 both at whole-brain level (first cohort) and in multiple functional networks (second cohort). An 

iterative optimization6 of TVB parameters was performed to gain a description of global coupling (G), excitatory (JNMDA) 

and inhibitory (Ji) synaptic strength, and recurrent excitation (w+).

TVB parameters were compared between groups using non-parametric tests and between networks with general linear 

model, while the relationship with neuropsychological scores was assessed through multiple regressions. K- mean clustering 

reconstructed subjects-specific E/I profile.

RESULTS

At whole-brain level, TVB parameters were different between groups, and AD patients showed the highest global coupling 

and inhibition (Fig1A). Global coupling, excitation and inhibition strength significantly contributed to explain the 

variation of neuropsychological scores (Fig1B), while clustering analysis revealed the heterogeneity of E/I balance across 

subjects and groups (Fig1C).

In multiple functional networks, TVB parameters revealed network-dependent E/I and connectivity patterns showing 

a different impact of neurodegeneration in AD and FTD (Fig2A). Networks-specific excitation, inhibition and global coupling 

explained neuropsychological performance in the cognitive domains in which the network is involved (Fig2B). Clustering 

analysis identified TVB parameters of cognitive networks as the most informative features allowing to isolate personalized 

fingerprints (Fig2C) and reveal the correspondence between cognitive networks properties and clinical severity.

DISCUSSION

Through virtual brain models, we provide a first description of E/I balance in dementia both at whole-brain and functional 

networks level.

At whole-brain level, the high global coupling characterizing AD underlies the hypersynchrony of disrupted networks, 

while high inhibition strength supports GABAergic dysfunction in AD pathogenesis. At networks level, TVB parameters 

capture differential aspects of the two disease conditions, depicting the Default Mode and the Frontoparietal networks 

as crucial to distinguish dementia patients.



Beside a novel analysis of pathological differences between neurodegenerative diseases, TVB parameters were associated 

with subjects’ neuropsychological performance and underline the link between neurophysiology and cognition.

Therefore, TVB parameters can provide a unique subject-specific description of E/I balance at whole-brain level and unveil 

E/I patterns in functional networks, proving sensitive to clinical severity in multiple phenotypes.

In conclusion, TVB simulations can reveal subject-specific profiles of dementia patients, opening new perspectives for 

understanding disease pathophysiology and for designing personalized therapeutic approaches.

FIGURES LEGENDS

Fig.1| A) Boxplots of optimal TVB parameters (G=global coupling, J_NMDA=excitation, w+=recurrent excitation, Ji=inhibition) 
across groups (healthy=HC Alzheimer’s disease=AD Frontotemporal Dementia=FTD). Asterisks represent significant 
differences (p<0.05). B) In backward regressions a different combination of features including TVB parameters significantly 
(p<0.05) explain the variation (R2 index) of each neuropsychological domain. C) Top: clusters identified with k-means analysis 
(left: colour coded) are characterized by a combination of low and high TVB parameters (right: Ji, J_NMDA and w+ on the axis, 
G values colour coded). Bottom: Visual representation of cluster distributions across groups. Each dot represents a single 
subject, providing a subject-specific description of the excitatory/inhibitory balance.

Fig.2| A) Network (DMN=default mode, FPN=frontoparietal, LN=limbic, AN=attention, VN=visual, 
SMN=somatomotor) specific changes related to neurodegeneration are summarized in the tables. The increase or decrease 
of TVB parameters (G=global coupling, J_NMDA=excitation, w+=recurrent excitation, Ji=inhibition) in a network with respect 
to the others is indicated with colored arrows in the pathological groups (AD, FTD). B) In backward regressions networks 
specific TVB parameters contribute to significantly (p<0.05) explain neuropsychological scores variance (R2 index) in 
the cognitive domains in which the network is involved. C) Top: Cognitive network properties (Ji in AN, G in LN, G in DMN) are 
the most informative features to perform patient’s labelling and each of the identified clusters is characterized by a 
combination of low and high TVB parameters. Bottom: The distribution of subjects into the clusters outlines 
personalized fingerprints based on cognitive networks properties. Each dot represents a subject and dots dimension 
corresponds to the cognitive status (assessed with MMSE), revealing the correspondence between cognitive networks 
properties and clinical severity.
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INTRODUCTION/MOTIVATION
Neural bases of consciousness have been explored through many different paradigms and the notion of complexity 
emerged as a unifying framework to characterize conscious experience. To date, the perturbational complexity index (PCI), 
rooted on information theory, performs best to assess consciousness through brain stimulation. However, the 
mechanisms underpinning this complexity remain unclear and reliable metrics on spontaneous activity are still missing. 
In the present study, we explore brain responsiveness and resting-state activity through large-scale brain modelling and 
prove that complexity and consciousness are directly associated with a fluid dynamical regime (Fig 1). This fluidity is 
reflected in the dynamic functional connectivity, and other metrics drawn from the theory of dynamical systems and 
manifolds can capture dynamics in synthetic data. We then validate our findings on a cohort of 15 subjects under anesthesia 
and wakefulness and show that measures of fluidity on spontaneous activity can distinguish consciousness as good as 
perturbational complexity.

METHODS
We built a large-scale brain network model with The Virtual Brain (TVB [1]) consisting of 84 cortical and subcortical regions 
using a connectome from the Human Connectome Project (HCP [2]) and a mean field model [3]. Spontaneous EEG 
data and maximum PCI values of 15 healthy subjects under anesthesia (Xenon N=5, Propofol N=5 or Ketamine N=5) and 
wakefulness were provided by [4,5]. In synthetic data, perturbational complexity was assessed by a modified version of PCI 
[6], coined simulation PCI (sPCI). The fluidity of spontaneous data is defined by the variance of the upper triangular part of 
the dynamic functional connectivity (dFC). After binarization, complexity was calculated by Lempel-Ziv (LZ) complexity and 
the size of the functional repertoire (SFR) was defined by the count of unique avalanche configurations during a recording [7]. 
The bursting potential (BP) is based on the organization of neuronal activations in short-lived bursts and corresponds to 
the maximum variation of the bursting profile. Classification accuracy of the resting state metrics was tested using a 
Support Vector Machine algorithm with a linear kernel. First, grouping all participants in the wakefulness condition 
(N=15) against anesthesia (N=15); and second, grouping participants in conscious report (N=20) against no report (N=10).

RESULTS AND DISCUSSION
Spontaneous activity of the network can show a variety of dynamics depending on two global parameters: the global 
coupling G and noise. Non-trivial behaviour is found around a working point where cascades of coactivations of different sizes 
and durations occur in a complex fashion. Fluidity based on dFC is found to be maximal around this working point, and so is 
sPCI when the system is perturbed. LZ complexity, the SFR and BP are found to increase abruptly as global coupling crosses the 
working point. This suggests that the same dynamical regime might underpin both the highest brain responsiveness and 
the most fluid spontaneous activity. In empirical data, PCI is systematically higher during wakefulness than under 
anesthesia for Xenon and Propofol drugs, except for Ketamine. Metrics on spontaneous activity revealed that fluidity is 
also systematically higher during wakefulness than anesthesia (except for Ketamine) with a classification accuracy of 100%. 
Results for LZ complexity, the SFR and BP were similar (Fig 2). Here, we demonstrated that the symmetry breaking caused 
by the connectome is
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sufficient for setting the global working point of the brain, allowing the generation of complex behavior in different 
paradigms: rest and stimulation.
In the future, the imperfect separation of groups for some of the metrics could be improved by personalized brain modelling 
and including more realistic parameters in the models such as neuromodulatory pathways to improve explanatory power.
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FIGURES



Fig 1: Conceptual framework of the study
(a) Consciousness is a continuum and can be explored with drug-induced coma of various depths (Xenon, Propofol
> Ketamine > Wakefulness). We hypothesized a correspondence between the variations in complexity found with PCI and 
the dynamics of spontaneous activity across the spectrum of consciousness. (b) We sketched various patterns of spatio-
temporal activity reflecting changes in perturbational complexity from left to right. In (c) we showed the conceptual 
shapes of corresponding manifolds of brain activity responsible for different sizes of the functional repertoire (number of 
wells) and associated with consciousness. (d) The brain is modeled as a network of neural masses coupled by an empirical 
connectome. This whole-brain model serves as a platform to simulate resting state activity (bottom left) and cortical 
stimulation (top left, example of firing rate time series with applied stimulus). Dynamical properties of the simulations 
are studied and compared with data features of human empirical recordings of spontaneous activity (bottom right, EEG 
during wakefulness and under three anesthetics) and stimulation (top right, TMS-EEG protocol performed in the same 
conditions).

Fig 2: Predictive power of resting-state metrics and PCI
(a) Crossplots between the PCI obtained experimentally during a TMS-EEG protocole and each metric on spontaneous 
recordings (functional repertoire, complexity, fluidity and bursting potential). Complexity and the size of the functional 
repertoire were normalized by the length of the recording in minutes. (b) Classification accuracy of a Support Vector 
Machine classifier with a linear kernel to distinguish either between anesthesia and wakefulness (downward orange 
triangles) or between conscious report and no report (upward blue triangles). Dashed lines represent the benchmark 
performances achieved by PCI classification (100% for consciousness and 87% for anesthesia).
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INTRODUCTION/MOTIVATION

The Human Brain Project has the objective of creating a comprehensive digital infrastructure for brain research. This 

infrastructure is meant to consider the complexity and multi-scale nature of the brain during the co-design of software and 

hardware tools. Multi-scale modelling and (co-)simulation using the EBRAINS infrastructure is now possible and opens a new 

avenue to address questions linking relevant features of brain structure and function from the molecular level all the way to 

whole brain dynamics. Besides simulation, analysis and visualization tools have also been developed to aid the exploration 

and understanding of the information produced during the scientific workflows. In particular, visualization tools allow 

end users to explore and explain relevant data features which would otherwise be impossible to see. Understanding the 

complex structural and functional connections in the brain as well as their changes through time is essential to advance 

brain research ([1,2,3]). In this work we present an overview of a set of visualization tools which address the challenge of 

understanding the multiscale brain.

METHODS

We have developed a comprehensive set of visualization tools to provide end users with different perspectives on data 

produced at different scales of brain simulation and enable multiscale modeling.

First, we present ConGen [4], a framework that facilitates the generation of multiscale connectivity in large neural networks 

using a symbolic visual language capable of representing the model at different structural levels. At the other end of the in-

silico experimentation workflows, we present the ViSimpl [7,8] and NeuroTessMesh [6], a set of tools which allow the 

visualization using coordinated views on different perspectives on anatomical and neural dynamics data.

The visual front-end of ConGen (Fig. 1) enables the creation of a hierarchy of super-populations and populations and the 

specification of their connections by establishing the necessary connectivity parameters. This multiscale approach makes it 

possible to generate large scale scenarios capturing global behavior and local details at the
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same time. Its symbolic language allows researchers to create and visually analyze the generated networks 

independently of the simulator to be used, since the visual model is translated into a simulator-independent language.

ViSimpl (Fig. 1) provides 3D particle-based rendering that allows visualizing simulation data with their associated spatial and 

temporal information, enhancing the knowledge extraction process. It also provides abstract representations of 

the time-varying magnitudes supporting different data aggregation and disaggregation operations and giving also 

focus and context clues.

Finally, NeuroTessMesh (Fig. 1) provides a visual environment for the generation of 3D polygonal meshes that approximate 

the membrane of neuronal cells. The 3D models can be tessellated at different levels of detail, providing either 

homogeneous or adaptive resolution along the model at an affordable computational cost, both in terms of memory and 

rendering time.

Fig. 1.- Left: Different views of ConGen. Top right: ViSimpl. Bottom right: NeuroTessMesh, showing a single neuron (left) and 

a cortical column (right).

RESULTS AND DISCUSSION

We have developed the aforementioned tools and deployed them on FENIX, offering them as part of the EBRAINS 

infrastructure. We have tested these tools using data produced from different work packages within the Human Brain Project, 

and used them to support scientific use cases as well as training, workshops and dissemination.

These tools have been designed to reduce the complexity of working with large amounts of data and help the users extract 

meaningful information from it. These tools particularly support the modeling and simulation of the multiscale brain, which 

requires a combination of hierarchical grouping and visual abstractions in order to convey relevant information.
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INTRODUCTION/MOTIVATION

In computational neuroscience, multicompartment models provide arguably one of the most biophysically detailed 

representations of single neurons. They are built by combining a morphological reconstruction of neurons, obtained 

through imaging techniques, with electrophysiological characteristics of ion-channel dynamics and their distribution over 

the neuron morphology. These models have enabled researchers to explore several characteristics of neuronal dynamics, 

including dendritic and axonal properties. In recent years, computer-based optimization has enabled computational 

neuroscientists to explore the large parameter space of these models more thoroughly and faster, for example using 

evolutionary strategies and specialized software such as BluePyOpt.

Still, for the vast majority of models, experimental features used to fit the model are extracted solely from somatic patch-

clamp recordings. While the soma clearly is a very important "compartment'', neurons are much more than just their somata. 

However, quantitative data about of the dynamics taking place in the axonal and dendritic arbors is sparse mainly because 

performing simultaneous patch-clamp recordings of multiple compartments of the same cell is extremely challenging.

One strategy to capture dynamics over a larger spatial range could be to use extracellular signals, which are generated 

by transmembrane currents of all neuronal compartments and provide an indirect readout of the intracellular activity. 

This could be made possible with the advent of high-density micro-electrode arrays (HD- MEAs), which enable the 

recording of signal of individual neurons at sub-cellular resolution. This richness of information could allow the 

parameterizing of neuronal compartments which cannot be simultaneously and directly probed by patch-clamp 

experiments.
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In this study, we investigated the potential of extracellular recordings as a data source for multicompartment models 

building and we extended the software BluePyOpt to allow such simulations to happen.

METHODS

Two cultured cortical neurons were exposed to a set of current stimuli and a simultaneous acquisition of their 

intracellular and extracellular voltage activity using somatic patch clamp recordings and a HD-MEA were performed. 

After the electrophysiology data acquisition, the target neurons were imaged to reconstruct their 3D morphology. During 

this step, the position of the cells relative to the MEAs were also recorded.

In a second step, we implemented the LFPy library as a backend simulator to the BluePyOpt optimization library. In this 

simulator, we instantiated a replica of each of the morphology reconstructions to which were added a set of mechanisms 

describing the ionic and calcium dynamics taking place in the cell. In parallel, we designed and extracted meaningful 

electrical features from both the intra and extracellular recordings. These electrical features were then used as targets 

during an optimization procedure aiming at finding the optimal parameters for the models for them to reproduce the 

features observed experimentally when exposed to the same stimuli.

RESULTS AND DISCUSSION

In two cell models, the use of patch-clamp data alone yielded better intracellular features, while the use of MEA data resulted 

in better extracellular features. In this latter case, the shape characteristics of the extracellular waveforms appear to be 

reproduced by the optimized cell models, but mismatches are still apparent.

Our study highlights key difficulties associated to the use of MEA both during the data acquisition and simulation steps. 

Adding extracellular measurements to a patch-clamp experiment adds constraints on the experimental setup and 

requires a quasi two-dimensional sample. On the simulation side, it implies making approximations about the medium 

surrounding the cells and requires a significant amount of compute power as the local field potential needs to be 

computed at each timestep of the simulation.

Keywords: high-density micro-electrode array, single neuron, neuron model building, LFP, LFPy, BluePyOpt
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INTRODUCTION/MOTIVATION

BRAVE aims at developing new and safer ligands against neuroinflammation and related diseases, by targeting the NLRP3 

inflammasome (Figure 1), whose aberrant activation is strongly associated with neuroinflammation and, therefore, to 

several neurodegenerative diseases for which effective treatments are still missing. Recently, targeting the NLRP3 

inflammasome has also been suggested as a promising and viable strategy to ease acute and long COVID-19 symptoms, again 

associated to neuroinflammation [1,2].

The NLRP3 inflammasome is formed by the apoptosis-associated speck-like protein containing a caspase-recruiting domain (ASC), 

procaspase-1, and the NLRP3 protein as the central core. Upon binding of activation signals, NLRP3 protein undergoes a massive 

conformational change that triggers the production of pro-inflammatory cytokines IL-1β and IL-18, and cell death by 

pyroptosis. The nucleotide-binding and oligomerization (NACHT) domain binds and hydrolyzes ATP and is primarily 

responsible for the oligomerization process [3-5]. Inhibition of NLRP3 protein by small molecules binding to an allosteric site 

in the NACHT domain is a strategy already explored by compounds as MCC950, which, unfortunately, present several toxicity 

issues [6].
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Figure 1. The BRAVE project

METHODS

Building on previous results obtained by our group, we are currently investigating and optimizing a library of in- house 

synthesized NLRP3 inhibitors by means of in silico studies. After a first assessment of the binding pose with docking studies, 

for the most promising inhibitors molecular dynamics (MD) simulations were set up to evaluate the stability of the ligands 

and characterizing their interaction in the binding site (Figure 2). As the synthesis of this library of NLRP3 inhibitors and in 

vitro tests are still ongoing, the results of MD simulations are guiding the modulation of scaffolds to maximize their 

affinity. In parallel, MD simulations of NLRP3 in complex with the known sulfonylurea-based inhibitor MCC950 have been run 

to clarify, at atomistic details, the allosteric inhibition on the overall architecture of NLRP3, and the interactions established 

by MCC950 in the NLRP3 binding site.

Figure 2. Pipeline for the identification of new NLRP3 allosteric inhibitors.



RESULTS AND DISCUSSION

MD simulations led to the selection and design of different series of ligands characterized by the presence of a polar moiety 

pointing towards the exterior part of the binding site, a hydrophobic region deeply inserted in the binding pocket and a 

linker joining the two. In particular, three different linkers have been recognized as more promising when the compounds 

have been tested in J774A.1 cells, for their capability of reducing the production of interleukin-1β, upon LPS/nigericin 

stimulation. Indeed, IC50 values in the low micromolar range have been determined, identifying these compounds as 

new promising hits for treating neuroinflammation. A selected number of molecules is currently under hit-to-lead 

optimization stage and is being tested for basic pharmacokinetic parameters and BBB permeation.

Keywords: Neuroinflammation, neurodegeneration, NLRP3, inflammasome, drug design, molecular dynamics 

simulations, long COVID
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Purpose: Current treatment options for epilepsy are medication, surgical removal of the epileptic 
tissue and stimulation. Success rates of surgical and stimulative interventions are in the range of 50% 
to 70%, leaving room for improvement. Computational modelling and dynamical systems theory 
can help to further our understanding about seizure dynamics and possible to provide 
intervention strategies.

Method: We built a high resolution personalized computational model of a patient with drug 
resistant focal epilepsy in the left temporal lobe. T1 weighted and diffusion MRI together with 
tractography were used to reconstruct the cortical surface and to estimate connections between 
points of the surface on the scale of 1mm3. A two dimensional dynamical model, called the 
Epileptor, was used in an excitable regime to model seizure dynamics.

Results: We first simulated reentry excitation in a toy model of two delay-coupled 2D Epileptors. 
Then we equipped the cortical surface with the dynamical model and explored the parameter space 
of local and global coupling strength. We observed self-limiting excitations, spiral waves and 
sustained reentry excitation. We tested two intervention strategies trying to prevent reentry. 
Virtual surgery was applied to the white matter by lesioning fibre tracks and removing their 
contribution to the connectivity of the cortex. We also demonstrated phase dependent 
stimulation effects through virtually implanted electrodes.

Conclusion: We demonstrated that a high resolution personalized computational model can be used 
to simulate epileptic dynamics and test intervention strategies on a level of resolution that is 
necessary for real world applications. Future studies should focus on fine tuning the parameters of 
the model to fit it to the individual observed empirical data and optimize the intervention.
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INTRODUCTION

Neuronal signalling cascades originate, at the subcellular level, from a sequence of complex biomolecular interactions 

whose aberrations can cause the onset of diverse pathological conditions, including cancer. Protein- protein interactions 

(PPIs) are clinically relevant targets for the design of many small-molecule drugs as well as engineered proteins (e.g., 

antibodies or cytokines) [1]. The dissociation rate constant (koff) or its reciprocal, residence time (τ=1/koff), is one of the 

key parameters that describe the duration of biomolecular interactions and its value can be optimized in the design of 

specific, high-affinity modulators, thus it is assuming an increasingly important role in many drug-design campaigns. 

However, computing kinetic rates (typically ranging from minutes to hours) is very challenging due to the limited 

timescale accessible with conventional molecular dynamics simulation approaches [2]. To tackle this limitation, we 

here report the validation and application of a computational method to estimate protein-protein dissociation 

rates, providing a basis for its use in kinetic modelling of neuronal signalling cascades, as well as in their modulation.

METHODS

We employed the computationally efficient τ-RAMD (τ-Random Acceleration Molecular Dynamics) method [3], which 

enables the observation of dissociation events in short timescale (nanosecond) molecular dynamics simulations. 

Following the successful application on protein-small molecule systems [4], τ-RAMD is here used to estimate the relative 

residence times for PPIs. Besides the computation of the dissociation rate, τ-RAMD, is here applied together with the MD-

IFP (Interaction Fingerprint) post-analysis, to provide an in-depth investigation of the dissociation mechanisms (see the 

workflow in Figure 1). The methodology is here assessed by application to a set of well-known protein-protein complexes 

and a wide range of mutants [5].
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Figure 1. τ-RAMD workflow applied to protein-protein complexes. A randomly oriented force (F) is applied to one of the two 

proteins to facilitate the dissociation. A set of RAMD simulations are run until the dissociation of the two proteins is 

complete. Afterward, the RAMD trajectories are analyzed to compute the relative residence time through a bootstrapping 

procedure (green box) and to compute the IFPs to perform a cluster analysis for the detection of the dissociation paths 

and related metastable states (violet box).

RESULTS AND DISCUSSION

Our calculations show the ability of τ-RAMD to compute the relative residence time for a diverse set of protein- protein 

complexes in overall agreement with the experimental data (Figure 2a). The cluster analysis of the MD- IFP data provides 

structural insights into the unbinding mechanism and enables the detection of the metastable states along the dissociation 

pathway. The latter information helps to identify hot-spots to target to selectively modulate PPIs (Figure 2b). Overall, τ-

RAMD is found to be a valuable approach for guiding drug and protein design and this study provides a basis for its use in the 

kinetic modelling of signaling cascades.



Figure 2. Results for a protein-protein complex and a set of its mutants. a) The experimental residence times computed 

with τ-RAMD for a set of 23 mutants of the barnase-barstar enzyme-inhibitor complex are plotted against the 

experimental values. b) The two main egress routes detected in the MD-IFP and cluster analyses are indicated with the key 

residues highlighted.
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Introduction
The olivo-cerebellar loop is central in motor control and learning. Climbing fibers from the Inferior Olive 
(IO) neurons innervate Purkinje cell arborizations, which in turn inhibit Deep Cerebellar Nuclei (DCN), 
which connect back to the IO, completing the loop. Neurons from the IO show persistent subthreshold 
oscillations, which can synchronize via dendro-dendritic gap junctions in clusters [Loyola19]. Multiple 
studies exist using computational (point cell) models to characterize the IO dynamics, with a focus on the 
biophysics of this brain region [deGruijl12, Negrello19]. We created a novel method to generate realistic 
morphologies and network topologies of an in silico IO, allowing one to study the precise dendritic features 
and spatial boundary conditions that influence IO spatio-temporal pattern formation.

Methods
Morphological detailed digital twins of the IO were grown via a novel graph-based algorithm, mimicking 
experimental distributions [Leznik05, Rekling12, Vrieler19, Lefler20] and obeying spatial constraints of the 
IO. Spatial boundary conditions were derived from a sliced mouse IO. A



biophysical model of IO neurons was ported to the Arbor [Akar19] simulator. Evolutionary search 
[Hansen19] optimization of cells with similar passive impulse response was used to tune single cells 
subthreshold oscillations to within observed frequency, amplitude and symmetry ranges. Subsequent 
connection as a network led to unpredictable (but expected) loss of behavior, which was restored by a 
fast homeostatic control mechanism, hand tuned and developed for this purpose. Both a connected and 
unconnected network were simulated at the same time to allow the controller to tune both observed in-
network and disconnected cellular behavior. Final networks were simulated in Arbor and local field 
potentials (LFP) were derived using the LFPyKit [Hagen22] library.

Results
In general, there is good agreement between in silico and in vitro dendritic statistics, even for empirical 
distributions that were not available to the network generation method. Sweeping over gap junction 
conductance, we found multiple synchronization states, suggesting that the default state of the 
unperturbed network is cluster synchronization. Specifically, by mapping gap junction conductance to 
experimentally obtained coupling coefficients, we find that the biological network is likely tuned for the 
critical regime between global synchrony and maximum cluster synchronization. Clustering of the network 
topology did not have a large effect on the amount of observed dynamically coupled clusters, but did 
affect the shape of these clusters considerably. LFP’s obtained from a in silico whisker puff experiment 
had some similarities to experimentally obtained results, but showed that the biological network was 
likely more synchronized than the inferior olive network.

Discussion
Tuning of a large library of highly variable morphological cells could not be solved by tuning each cell 
individually. Our method, based on the grouping of similar morphologies on the basis of their passive 
impulse response, yielded good results but still involved manual work in tuning of hyperparameters. A 
more general method could be developed that also looks at channel distributions, for example, based on 
the workings of NEAT [Wybo18] which included linearized channels in its morphology metrics. However, 
the assumptions of NEAT break under subthreshold oscillations. Similarly, network tuning via individual 
controllers per cell leads to desired behavior, but only after considerable manual intervention. Automatic 
derivation of stable controller rules could use insights from machine learning and control theory for 
further developments. Still, our ad-hoc developed methods lead to a novel, highly detailed model of the IO 
that allows for insights on the effect of local topology on cluster dynamics and is the first IO model to be 
able to compare itself to experimental LFP data.
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INTRODUCTION/MOTIVATION

Alzheimer’s disease (AD), a degenerative brain disorder, has a long preclinical stage and, before any clinical 
symptoms appear, pathological processes are observed in the hippocampus and entorhinal cortex, key brain 
structures responsible for memory encoding and retrieval. AD can not be prevented, halted, or cured today, and 
new interdisciplinary ways are urgently needed to understand and treat this devastating disease. Recent 
experimental evidence supports the fundamental role of AD-related peptides early in the pathology: in particular 
the most widely studied Amyloid beta (Aβ), and the less investigated Amyloid eta (Aη) and Amyloid precursor 
protein (APP) C-terminal peptide (AICD). The aim of this project is to understand the AD-related peptide-induced 
mechanisms of impaired learning and memory in hippocampal CA1 region in early pathology of AD by applying 
the integrated experimental and computational modelling approach.

METHODS

We investigated the effects of Aβ, Aη, AICD on intrinsic excitability of hippocampal CA1 pyramidal neurons and 
synaptic plasticity at hippocampal CA1-CA3 synapses in early pathology of AD. We developed data-driven in silico 
models of the hippocampal learning in CA1 region under AD conditions, and 1) extended the experimental 
evidence of Aη, Aβ, AICD-related changes in the properties of hippocampal CA1 pyramidal neuron synaptic 
plasticity, synaptic signal integration and neuronal excitability; 2) incorporated the effects of AD-related 
peptides into computational models of hippocampal synaptic plasticity to determine and explain the 
mechanisms of altered hippocampal function that leads to impaired learning in AD; 3) assessed the potential 
targets for innovative treatment of AD. We analyzed the experimental data of AD-related peptide effect on 
intrinsic excitability properties of CA1 pyramidal neurons using Feature Extraction Tool of the HBP Brain Simulation 
Platform. We built a computational model of synaptic plasticity under AD conditions and embedded it into a 
compartmental model of CA1 pyramidal neuron to study the development of individual synaptic strengths in 
clusters of
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Schaffer collateral synapses and to assess the patterns of impaired learning in hippocampal pyramidal neurons.

RESULTS AND DISCUSSION

The modeling results support the experimental evidence that pathological concentrations of Aβ, Aη, and AICD 
cause long-term potentiation (LTP) impairment. Long-term depression (LTD) enhancement was observed in Aβ 
conditions. Synaptic plasticity was strongly dependent on GluN2B-NMDA receptor subunit functioning, and 
rescued by its partial blockade in AD. The modeling study provides insight into the complex interactions in AD 
pathophysiology, and suggests the conditions under which synaptic plasticity is restored. The inter-disciplinary 
analysis, bringing together experimentalists and modelers, helps to further unravel the neuronal mechanisms 
most affected by AD, build a biologically-plausible computational models of the hippocampal CA1 area under AD 
conditions, and suggest potential targets for pharmacological treatment of AD.

Keywords: Synaptic plasticity, Alzheimer’s disease, hippocampus, CA1 pyramidal neuron, NMDA receptor, GluN2B-
NMDA receptor subunit, Amyloid beta, Amyloid eta, Amyloid precursor protein C- terminal peptide.
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INTRODUCTION/MOTIVATION

NESTML is a domain-specific modeling language for neuron models and synaptic plasticity rules. It is designed to support 

researchers in computational neuroscience by allowing them to specify models in a precise and intuitive way. These models 

can subsequently be used in dynamical simulations of small or large-scale spiking neural networks, by means of high 

performance simulation code generated by the NESTML toolchain. NESTML features a concise yet expressive syntax, 

inspired by Python, making it easy to write, understand, maintain and share models. There is direct language support for 

(spike) events, differential equations, convolutions, stochasticity, and arbitrary algorithms using imperative programming 

concepts, in addition to flexible event management using handler functions and prioritization.

METHODS

Models specified in the NESTML syntax are processed by an open-source toolchain that generates fast code for a given target 

simulator platform. It was originally developed for NEST Simulator1 but is being extended with support for the SpiNNaker 

neuromorphic hardware platform. The toolchain provides verbose model validation and transformation 

(optimization), fully automated ODE analysis, solver selection and solver code generation, and is extensible to new target 

platforms in a straightforward manner by means of templates. The toolchain is written in Python and accessible using a 

Python API. It can be run locally, or in a cloud environment (such as Fenix) with Jupyter Notebook as a web interface.

NESTML comes with an extensive library of neuron and synapse models. The supported neuron models include Hodgkin-

Huxley and reduced variants, current and conductance-based integrate-and-fire neurons and adaptive variants. NESTML also 

supports synaptic plasticity rules such as spike-timing dependent plasticity (STDP) with all- to-all and nearest neighbor spike 

pairing, triplet STDP, and third-factor plasticity rules where STDP weight update is modulated by a postsynaptic variable such 

as dendritic current or dopamine concentration.

mailto:c.linssen@fz-juelich.de
mailto:c.linssen@fz-juelich.de
mailto:p.babu@fz-juelich.de


Recently added new features include support for vectors, delay-differential equations, detailed branching 

compartmental neurons and a Python code generation target. The software is hosted on Github2 with continuous integration 

(CI) run on Github Actions. The CI runs over 100 unit and integration tests which validate the models and toolchain 

functionality, checking for numerical correctness of the simulation. Model documentation is automatically generated 

and published on ReadTheDocs in combination with other software documentation and training materials3.

RESULTS AND DISCUSSION

NESTML makes neuron and synapse modeling accessible to neuroscience researchers without requiring a training in computer 

science. With increasing model complexity, models are typically re-used and evolved upon rather than starting from 

scratch. This means that models need to be findable, accessible, interoperable and reusable (‘FAIR’ principles). Findable 

means that in a database of potentially hundreds of model variants, the appropriate model can be easily found. Accessible 

models are those that do not require extensive toolchain dependencies to work with. Interoperable models are usable across 

different computation hardware and simulation environments. Reusability implies that the models can be easily extended 

and iterated upon. Furthermore, neural network models often involve a very large number of neurons and synapses, 

placing high demands on performance and memory consumption. Code generation allows an accessible and easy-to-

use language for the user to be combined with good simulation performance; a technique that is gaining more traction 

within neuroscience4.

Keywords: neural network, simulation, spiking neuron, synapse, model
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INTRODUCTION

Detailed computer simulations are an important tool for neuroscience. To model the connectivity of large scale networks 

we have developed Snudda, a software tool that based on reconstructed morphologies can place synapses between 

nearby neurons [1,2,3]. We have recently extended the tool with the ability to model the degeneration of neuron 

morphologies, seen for example in Parkinson’s disease (PD) and rodent models of PD [4]. Here we present a use case of striatal 

network creation for healthy and diseased cases. The dendrites of D1 and D2 striatal projection neurons (dSPN, iSPN) 

degenerate, leading to a reduction in connectivity, while the axons of fast spiking (FS) interneurons grow as a compensatory 

mechanism.

METHODS

Neuron models are created based on reconstructed neuron morphologies, and electrophysiological parameters are optimised 

using BluePyOpt [5]. The resulting models are then placed either inside a 3D mesh representing the striatum, or in a subset of 

the volume. Based on the proximity of axons and dendrites, putative synapses are placed using a touch detection algorithm 

that voxelizes the space and looks for locations where axons and dendrites overlap. The putative synapses are then 

pruned based on a set of rules to match pairwise connectivity data, producing the final set of synapses. Gap junctions are 

also placed using a similar algorithm.

To model the neurodegenerative changes in the network each SPN had their dendrites shrunk from the dendritic tips using 

Treem (Hjorth et al 2021). This reduced the size and complexity of the dendritic arborisation. The original and degenerated 

morphologies of the neurons were then compared, and Snudda removed the synapses that were on the parts of the network 

that had degenerated.
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The changes in the connectivity were then analysed, we investigated changes in synapse count and connection probability, 

but also used topological measures, such as counting the number of directed cliques.

RESULTS

We found that the decrease of the total dendritic length of dSPN and iSPN neurons, down to 70% in 6-OHDA lesioned 

mice and even more in human PD patients, leads to a drastic reduction in connectivity of the network. Based on the clique 

analysis we see that interneurons that are not degenerated become comparably more important for maintaining 

connectivity within the network as the dSPN and iSPN degenerate.

DISCUSSION

Here we present Snudda, a software tool for generating and simulating detailed networks of neurons, both in the healthy and 

in the diseased case. We demonstrate a use case of Parkinson’s disease, where from morphological changes we are able to 

model the alterations in network connectivity. Future work will include more detailed comparisons not only of the 

topology, but also on the activity of the networks including models tuned both for the healthy and diseased cases.

Keywords: Parkinson’s disease, striatum, detailed computer modelling
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INTRODUCTION/MOTIVATION

Mean-field models are commonly used in network and brain modelling for their simplicity in studying dynamics. 

They represent a lumped description of neuronal assemblies connected by synapses, but typically do not take into 

account the ionic composition of the extracellular space, which can strongly affect neuronal activity[1]. In this work 

we included this aspect, from the single neuron level [2] to the corresponding mean-field [3] as represented in figure 

1. 

METHODS

This study presents a mean-field model of a population of Hodgkin-Huxley-type neurons that links the intra- and 

extra-cellular ion concentrations to the mean membrane potential, and the synaptic input to the population firing 

rate. The approach follows the method developed by  Montbrió et al [4], that is valid if the membrane potential 

distribution is a Lorentzian and if the equation is quadratic. With our model the the cubic shape of the reduced 

Hodgkin-Huxley type model is approximate with a step-wise quadratic function to match these assumptions. The 

derivation preserves the slow dynamics of ion concentrations. This model is compared to experimental data obtain 

in-vitro using low-Mg2+ aCSF. The eletrophysiological activities were measured using extracellular glass electrode, 

together with extracellular potassium concentration, using potassium-selective microelectrode.  

RESULTS AND DISCUSSION

The experimental co-recording of extracellular local field potential and extracellular [K+] shows the correlation 

between pathological bursting and extra-cellular [K+] elevation (see figure 2a). Such a dynamics is capture by the 

model, which can generate various brain activities by capturing the dynamics of homogeneous networks of 

biophysical neurons driven by an ion-exchange mechanism. It can reproduce a large repertoire of behaviors 

including multi-stability during simulated healthy states, pathological spiking, bursting, and depolarization block [2]. 



It provides a detailed biophysical level of description while describing dynamics at the neural mass scale, and thus 

may bridge the gap between high-level neural mass approaches and physiological parameters that drive neuronal 

dynamics. This approach could serve as a computational baseline to address core questions in epilepsy research. In 

particular, how to identify the multiscale mechanisms implicated in epileptogenicity and propagations of seizures. 

A first implementation connecting neural mass models into The Virtual Brain, show propagation of pathological 

bursts show how with a certain level of connectivity the local elevation of potassium bath concentration leads to 

the propagation of pathological activities (see figure 2b). 

Keywords: Hodgkin–Huxley-type neurons, Mean-field model, Biophysical neural mass modeling, Multiscale neural 

mechanisms, Epilepsy
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Figure 1: Biophysically inspired neural mass model:

Schematic diagram of the ion channel mechanism in extracellular and intracellular space in the brain. A biophysical 
model of a single neuron consists of three compartments (left panel): the intracellular space (ICS; in red), the 
extracellular space (ECS; in dark blue), and the external bath (EB; in light blue). The ion exchange across the cellular 
space occurs through the ion channels: Na+ gets inside the ICS (yellow channel), K+ gets out (green channel), the 
flow of Cl− can be bidirectional (purple channel); for the pump (blue), Na+ gets out and K+ gets into the ICS. A 
population of interacting neurons sharing the same [K+]bath concentration forms a local neural mass (middle panel), 
for which we model the mean-field equations in this work. Brain network model (right panel) with the activity of 
each brain region represented by neural masses.

Figure 2: Comparison with experimental data and network model simulation:
(a) top: Experimental co-recording of extracellular local field potential (blue traces) and extracellular K+ 
concentration (green trace). Bottom: The model qualitatively reproduces the experimentally observed 
oscillations showing a modulation of the amplitude of the fast oscillations during a slow oscillation cycle. 
(b) Network simulation of structurally connected neural mass models and propagation of pathological 
bursts: Structural connectivity for six all-to-all connected nodes A, B,C, D, E, F with random weight 
allocation. Each node is described by a neural mass model derived as the mean-field approximation of a 



large population of HH neurons. When decoupled (Global Coupling G = 0), all the nodes operate in a 
‘healthy’ regime with the potassium concentration in their bath set to low values [K+]bath = 5.5, except 
for node D which is tuned into a pathological regime [K+]bath = 15.5 characterized by the spontaneous 
presence of bursts. When the global coupling is sufficiently increased, the pathological value of [K+]bath 
in node D generates bursts that diffuse through the connectome mimicking the spreading of a seizure.
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INTRODUCTION

Astrocytes, the most abundant glial type in the brain, have been shown to contribute to various brain functions in both 

developing and mature brains, and their dysfunctions are involved in a number of neurological disorders. Experimental 

evidence demonstrates coordinated neuronal and astrocytic activity in in vivo conditions [1]. Astrocytes interact with 

closeby synapses, neurons, other glial cells, and vasculature through complex cellular mechanisms [2]. In the cortex, 

astrocytes form non-overlapping domains that contain hundreds of thousands of synapses in rodents and up to million of 

synapses in humans [3,4]. Inside these domains, astrocytic processes are in close contact with synaptic terminals and affect 

synaptic transmission, plasticity, and neuronal excitability [2]. Cortical astrocytes also regulate extracellular ionic 

concentrations and blood flow. In order to incorporate astrocytic contributions in large-scale cortical simulations to 

understand different brain functions in health and disease, we need advanced computational infrastructure to model 

the complex astrocytic mechanisms, to integrate models with new anatomical, electrophysiological, and imaging 

data, and to examine how these mechanisms modulate activity in large cortical populations.

METHODS

In the past two decades, hundreds of new computational models that include neuron-astrocyte interaction 

mechanisms have been developed [5,6,7,8]. However, these models are rarely implemented using open-access simulation 

tools or shared through public platforms [8]. We developed new infrastructure for such models by
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implementing an astrocyte module into NEST [9], the cellular-level simulator for large-scale brain systems included in 

EBRAINS. NEST, extended with our new module, allows efficient implementation and simulation of large 

heterogeneous populations of neurons and astrocytes [9]. The new module includes an astrocyte model with internal 

calcium dynamics, a synapse model for astrocyte-neuron signaling, and user-friendly and efficient high- level connectivity 

functions which allow probabilistic or deterministic pairing of neurons and astrocytes. This new module improves the 

convenience, reliability, and reproducibility of neuron-astrocyte network models and supports reuse and sharing of 

published models.

RESULTS AND DISCUSSION

The development of the new NEST module had three phases. In the first phase, we extended the concept of a synapse in 

NEST to allow interactions between the pre- and postsynaptic neurons and the neighboring astrocytic compartment. In the 

second phase, we developed a new method to efficiently establish interactions within large heterogeneous populations of 

neurons and astrocytes. In the third phase, we implemented neuron-astrocyte network models composed of several 

thousands of cells using the new NEST module. We first simulated these models to test and verify the correctness and 

efficiency of our module; next, we used these models to explore the astrocytic impact on neuronal excitability and 

population activity. In summary, we developed a new solution for integrating mechanisms of neuron-astrocyte 

interactions into large cortical circuit models. This solution is implemented as a new module in the NEST simulator and 

through NEST it is integrated into the EBRAINS platform. It supports development of open-access, reproducible, and efficient 

large-scale computational models for neuron- astrocyte networks.

Keywords: astrocyte, neuronal networks, spiking neural networks, NEST simulator, neuron-astrocyte interactions, cell 

population, large-scale brain systems, cellular mechanisms, simulation, neuroscience infrastructure
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INTRODUCTION/MOTIVATION

Astrocytes, the largest non-neuronal cell type in the brain, have recently been shown to be involved in many brain functions, 

including memory and learning [1,2] and cognitive functions [3]. How astrocytes contribute to these functions is mostly 

not understood. We have shown with detailed mechanistic models that the cortical astrocyte can modulate synaptic long-

term depression in the somatosensory cortex and thus expand the information processing capacity of the brain [4]. We 

have also analyzed published computational models of astrocyte-neuron interactions and the putative cellular mechanisms 

of these models responsible for various brain phenomena [5,6,7,8]. In this study, we focus on understanding the role 

of astrocytes in network functions using existing computational models.

METHODS

We study here network-level models where at least two neurons and two astrocytes interact bidirectionally. The astrocytes 

must include at least one intracellular calcium mechanism, and calcium dynamics must be described by a differential equation 

that depends on calcium itself and at least one of the other astrocytic variables. In addition, astrocytic calcium must have an 

impact on some signaling variable or other intracellular signal in the astrocytes. Neurons must include at least one 

differential equation, for example for membrane potential. In this study, we first categorize and characterize the neuron-

astrocyte network models based on our detailed analysis of model components. We then show the evolution of how the 

models have been developed from previous models. We additionally study the models in view of the existing experimental 

data and present future perspectives.

RESULTS AND DISCUSSION

We analyze in total 32 models published until 2020, categorize them according to the modeled biophysical, 

biochemical, and cellular mechanisms, all types of functional interactions between modeled neurons and astrocytes 

in synaptic and non-synaptic communications, as well as inputs and outputs of the models, and develop new criteria to 

systematically present network-level properties in these models, such as the spatial organization of the cells and interaction 

schemes [8]. The largest neuron-astrocyte network models manage the computational

mailto:tiina.manninen@tuni.fi
mailto:marja-leena.linne@tuni.fi


burden by using computationally light single cell models, whereas the smaller models utilize more detailed ce ll models. The 

interactions between neurons are represented with conventional synaptic models. In about half of the models, 

neurotransmitters activate astrocytes, whereas in about third of the models, gliotransmitters activate neurons. The rest of 

the models use more phenomenological equations in neuron-astrocyte interactions. Astrocyte-astrocyte 

interactions are implemented with gap junctions or extracellular diffusion. Based on our analysis, we propose how to 

systematically describe and categorize the properties of neuron-astrocyte interaction models and present the next steps 

towards understanding astrocytic contribution to different brain functions. Shortly, comprehensive data about astrocyte 

morphology and physiology in vivo is needed to be able to build biologically more detailed data-driven computational 

models, existing computational tools should be extended also for astrocyte research, each new model should be contrasted 

with other published models, and the biological choices made in the model for morphological, physiological, cell and molecular 

biological aspects should be clearly explained and justified.

Keywords: astrocyte, brain circuit, computational model, intracellular calcium, neuron-astrocyte interaction, neuron-

astrocyte network, simulation, synapse
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INTRODUCTION/MOTIVATION

Functional magnetic resonance imaging (fMRI) relies on the coupling between neuronal and 
vascular activity [1], but the mechanisms behind this coupling are still under discussion. It is 
currently believed that glutamatergic synapses may play a central role in the coupling [2], inducing 
an increase of cerebral blood flow (CBF) via two main signaling pathways: a direct neuron-vascular 
pathway and a neuron-astrocyte-vascular pathway [3,4]. In both pathways, a glutamate induced 
increase in intra-cellular calcium concentrations (in neurons or astrocytes) triggers the production 
and release of a variety of vasomodulators which generate a dilation of nearby arterioles and an 
increase in CBF [3,4]. The relative relevance of these different signaling pathways is still under study. 
In particular, the role of astrocytes in the neurovascular coupling has it is still generating a strong 
debate. In addition, fMRI studies have become nowadays an essential tool to perform analyses of 
neuronal activity at the whole brain-level, but there is currently no biophysical detailed model 
designed to simulate the generation of BOLD signal at such a large scale. The goal of this work is to 
study the function of astrocytic calcium activity in functional hyperemia and to develop a tool to 
simulate the generation of BOLD signals at large scale with a biologically plausible model.

METHODS

We developed and analyzed a biologically plausible model of the neurovascular coupling based on 
mean-field models. Our model incorporates recent experimental findings and modelling tools at the 
three levels of the system: neuronal, astrocyte and vascular (see Figure 1.A for a diagram of the 
model). Neuronal (and synaptic) activity was modeled via a recently developed mean-field 
description of a network of Adaptive Exponential (AdEx) integrate-and-fire neurons [5], accessible 
in EBRAINS and which has been already incorporated in the TVB platform. Following experimental 
evidence we considered the (calcium-mediated) release of the prostaglandin PGE2 by astrocytes as 
the principal vasomodulator acting in the coupling [4]. The vascular system was described by a novel 
formulation that relates arteriole volume to cyclic-AMP concentration, together with the classical 
Balloon model for the BOLD signal [6] (see Figure 1.B for the dynamics of the main variables of the 
model).

RESULTS AND DISCUSSION

Starting from a relatively detailed description we focused on fundamental aspects of the fMRI 
phenomenology (such as the Hemodynamic Response Function, the linearity of the coupling and the 
post-stimulus undershoot) and we analyzed the role of the calcium signal in these processes. We found 
that a calcium-driven Hemodynamic Response Function (HRF) can be generated from our model and 
that it is equivalent to the one observed experimentally. We corroborated this by comparing our 
results with the canonical HRF (Figure 2.A). We also showed that the BOLD responds linearly with 
the calcium activity and we reproduced our simulations using the HRF formalism (Figure 2.B). We 



found also that information transmission by the calcium signal operates mainly via frequency coding 
with a small contribution of amplitude modulation (Figure 2.C). Finally we found that a post-
stimulus undershoot in the calcium activity can cause an undershoot in the BOLD signal (usually 
observed in experiments) via a decrease in CBF.
Our work opens new ways to link known alterations of astrocytic calcium signaling in 
neurodegenerative diseases (e.g. Alzheimer’s and Parkinson’s diseases) with detectable changes in 
the neurovascular coupling. In addition, the adoption of the mean-field description will allow to 
perform efficiently large-scale simulations of BOLD signals. The mean-field model used is already 
incorporated in the TVB platform, which makes our model easily adaptable to the existing tools in 
EBRAINS for whole-brain simulations.

Figure 1: A) Diagram of the model describing neuronal, astrocyte and vascular dynamics. B) Time- 
series of the main-variables of the model (neuronal firing rates, glutamate concentration, calcium 
concentration and cerebral blood flow) during the application of a stimulus (indicated by the gray 
shaded area).



Figure 2: A) Hemodynamic response function (HRF) obtained from our model (solid blue line) and 
comparison with a canonical (double-gamma) HRF (dashed line). B) Results from the convolution of 
the HRF with the calcium activity and comparison with the simulated BOLD signal for a pulsed and 
oscillatory stimulus. C) Left: simulated BOLD signal for inputs of different strength. Right: amplitude 
of the BOLD signal as a function of astroyticic calcium oscillatory frequency. D) Post-stimulus 
undershoot obtained from the calcium dynamics and the corresponding undershoot observed in 
simulated BOLD signal.

Keywords: functional magnetic resonance, astrocytes, mean-field models, BOLD, neurovascular- 
coupling

ACKNOWLEDGEMENTS

Research supported by the CNRS and the European Union (Human Brain Project H2020-785907, 
H2020-945539).

REFERENCES

1 - S. Ogawa, T.-M. Lee, A. R. Kay, D. W. Tank, Proceedings of the National Academy of Sciences 87 
(1990) 9868–9872
2 - C. Iadecola, Nature Reviews Neuroscience 5 (2004) 347–360.
3 - M. Lauritzen, Nature Reviews Neuroscience 6 (2005) 77–85
4 - D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. MacVicar, E. A. Newman, Nature 468 
(2010) 232–243.
5 - M. Di Volo, A. Romagnoni, C. Capone and A. Destexhe (2019), Neural Computation, 31, 653– 
680.
6 - R. B. Buxton, E. C. Wong, L. R. Frank, Magnetic Resonance in Medicine 39 (1998) 855–864



118. Converging evidence of impaired brain function in systemic 
lupus erythematosus: changes in perfusion dynamics and 
intrinsic functional connectivity

Eleftherios Kavroulakis1*, Nicholas J. Simos2,3, Efrosini Papadaki1,2 , George Bertsias4,5, Despina Antypa6, Antonis 

Fanouriakis4,7, Thomas Maris 1,2, Prodromos Sidiropoulos4, Dimitrios T Boumpas4,7,8,9.

Affiliations: 1Department of Radiology, School of Medicine, University of Crete, University Hospital of 

Heraklion, Heraklion, Crete, Greece. 2Computational Bio-Medicine Laboratory, Institute of Computer Science, 

Foundation for Research and Technology - Hellas, Heraklion, Greece. 3Computational Bio-Medicine 

Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, 

Greece. 4Department of Rheumatology, Clinical Immunology and Allergy, School of Medicine, University of 

Crete, University Hospital of Heraklion, Heraklion, Crete, Greece. 5Institute of Molecular Biology and 

Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Greece. 6Department of Psychiatry, 

School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Crete, Greece. 74th 

Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodestrian 

University of Athens, Athens, Greece. 8Laboratory of Autoimmunity and Inflammation, Biomedical Research 

Foundation of the Academy of Athens, Athens, Greece. 9Joint Academic Rheumatology Program, and 4th 

Department of Medicine, Medical School, National and Kapodestrian University of Athens, Athens, Greece.

*e-mail-address of corresponding author(s): terryka21985@gmail.com

INTRODUCTION

Systemic lupus erythematosus (SLE) is a systemic autoimmune inflammatory disorder which often affects the central 

nervous system (CNS) [1]. Symptoms vary widely among patients with neuropsychiatric SLE (NPSLE), ranging from overt 

(e.g., seizures, psychosis) to subtle presentations, such as headache, depression and anxiety symptoms, and cognitive 

dysfunction [2]. The development of novel, advanced MRI techniques has improved sensitivity to detect hemodynamic 

changes, as well as functional alterations as indexed by functional brain connectivity. Resting-state functional MRI (rs-

fMRI) is a non-invasive imaging technique, using blood oxygenation level– dependent (BOLD) signal, that has been widely 

used to investigate brain function in various CNS diseases, including NPSLE, where altered functional connectivity was 

shown both within and between several key brain networks [3]. Studies in patients with SLE with or without 

neuropsychiatric symptoms have reported altered functional connectivity both within and between several key brain 

networks [4 – 6]. Interestingly, rs-fMRI could provide evidence not only about neural activity, but also about regional 

cerebral perfusion alterations, through time-shift analysis (TSA), a promising new method that has been used to assess 

hemodynamics in previous studies [7-8]. According to this method, the hemodynamic transfer speed is indexed through 

the temporal shift of low- frequency BOLD signal fluctuations of rs-fMRI. A disturbance of local blood flow is reflected in 

these fluctuations as a localized delay (i.e., hemodynamic lag) or temporal gain (i.e., hemodynamic lead) in relation to the 

blood flow in major cerebral veins. Substantial shifts, in the order of seconds, have been shown to provide information about 

local brain hemodynamics similar to established MR perfusion techniques [6]. The purpose of this study was to examine 

changes in hemodynamics, through TSA, and functional connectivity, through intrinsic connectivity contrast (ICC), in 

patients with systemic lupus erythematosus (SLE) with or without neuropsychiatric manifestations.
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METHODS

Participants were 44 patients with neuropsychiatric SLE (NPSLE), 20 SLE patients without such manifestations (non-NPSLE), 

and 35 healthy controls. Resting-state functional MRI (rs-fMRI) was used to obtain whole-brain maps of (a) perfusion dynamics 

derived through time shift analysis (TSA), (b) regional functional connectivity (intrinsic connectivity contrast (ICC) 

coefficients), and (c) hemodynamic-connectivity coupling. Group differences were assessed through independent 

samples t-tests, and correlations of rs-fMRI indices with clinical variables and neuropsychological test scores were, also, 

computed.

RESULTS AND DISCUSSION

Compared to HC, NPSLE patients demonstrated intrinsic hypoconnectivity of anterior Default Mode Network (DMN) and 

hyperconnectivity of posterior DMN components. These changes were paralleled by elevated hemodynamic lag. In 

NPSLE, cognitive performance was positively related to higher intrinsic connectivity in these regions, and to higher 

connectivity-hemodynamic coupling in posterior DMN components. Uncoupling between hemodynamics and connectivity in 

the posterior DMN was associated with worse task performance. Non-NPSLE patients displayed hyperconnectivity in posterior 

DMN and sensorimotor regions paralleled by relatively increased hemodynamic lag.

Adaptation of regional brain function to hemodynamic changes in NPSLE may involve locally decreased or locally increased 

intrinsic connectivity (which can be beneficial for cognitive function). This process may also involve elevated coupling of 

hemodynamics with functional connectivity (beneficial for cognitive performance) or uncoupling, which may be 

detrimental for the cognitive skills of NPSLE patients.

Keywords: Neuropsychiatric lupus · Resting-state fMRI · Cerebral perfusion · Time shift analysis · Intrinsic connectivity 

coefficient · Visuomotor capacity
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FIGURES

Fig. 1 Whole-brain TSA maps. a, c, e: Group TSA maps in healthy controls (HC), NPSLE and non-NPSLE patients displaying voxels 
that showed hemodynamic lag (positive TSA values > 1 TR) or lead (negative TSA values < − 1 TR). b, d, f: Pairwise t-contrasts on 
parametric TSA maps between study groups (thresholded at p < .05, FDR corrected with minimum cluster size of 200 voxels)



Fig. 2 Whole-brain ICC maps. a, c, e One-sample T maps in the healthy control (HC), non-NPSLE, and NPSLE groups displaying voxels 
with significant ICC values. b, d, f Pairwise t-contrasts on parametric ICC maps between study groups. All tests were 
thresholded at p < .05, FDR corrected, with minimum cluster size
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INTRODUCTION/MOTIVATION

The response of a biological neuron depends on the precise timing of afferent spikes. This temporal aspect of the neuronal 
code is essential in understanding information processing in neurobiology and applies particularly well to the output of 
neuromorphic hardware such as event-based cameras. However, most artificial neuronal models do not take advantage 
of this minute temporal dimension. Inspired by this neuroscientific observation, we develop a model for the efficient 
detection of temporal spiking motifs based on a layer of spiking neurons with heterogeneous synaptic delays which we 
apply to the computer vision task of motion detection. Indeed, the variety of synaptic delays on the dendritic tree allows 
to synchronize synaptic inputs as they reach the basal dendritic tree. We show this can be formalized as a time-invariant 
logistic regression which can be trained using labeled data. We apply this model to solve the specific computer vision 
problem of motion detection, and demonstrate its application to synthetic naturalistic videos transformed into event 
streams similar to the output of event-based cameras. In particular, we quantify how the accuracy of the model can 
vary with the total computational load. This end-to-end event-driven computational brick could help improve the 
performance of future Spiking Neural Network (SNN) algorithms and their prospective use in neuromorphic chips.

METHODS

Figure
1 - An
illustration of the HD- SNN. From

left to right: An event stream is
processed by a

3D convolution in
space and time with as many
kernels as the different classes of motion, here 4 kernels are represented. This 
convolution is followed by a MLR that gives a probability of emitting a spike for each class. A spiking mechanism 
like a winner-takes-all generates the output spike train.

mailto:antoine.grimaldi@univ-amu.fr


In a previous work [1], we demonstrated that a Multinomial Logistic Regression (MLR) can be assimilated to a layer of spiking 
neurons with a lateral inhibition mechanism. In the present paper, we use this analogy and develop a linear-non-linear 
model based on a three dimensional convolution followed by a softmax function (see Figure 1). We apply this model on a 
motion detection task on simulated event-based recordings. To control for motion directions, we animate natural 
images by translating them following 8 different axes and 3 different velocities. Videos obtained with these translations 
are synthetically transformed to event streams according to the generative model of an event-based camera which 
mimics the output of retinal ganglion cells. On this dataset, we can train our model to detect motion and see if the 3D kernels 
make use of spiking motifs, specific for each motion direction. Once trained, we can test our model on the same type of stimuli 
and we also compute the accuracy of the model when pruning the weights of the kernel.

RESULTS AND DISCUSSION

Figure 2 - Representation of the weights for 3 of the 32 different learned kernels of the model as learned on natural 
scenes. Each pair of line correspond to the OFF and ON polarities respectively, with excitatory weights in warm 
colors. Delays are represented in the horizontal axis from right (zero delay) to the left (delay of 11 steps). Different 
kernels are selective to the different motion directions and we observe some level of orientation selectivity, where 
ON and OFF subfields present in a push-pull organization.

The learned model bears many similarities with neurobiological anatomical observations (see Figure 2). The event- driven 
computations of our method can be reduced drastically through the pruning of synapses, while maintaining top performance 
for classification. This shows that we may use the precise timing of spikes to enhance neural computations.

Keywords: time code, event-based computations, spiking neural networks, motion detection
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INTRODUCTION/MOTIVATION

Segregating objects from each other and from the background is essential for survival. At the 
neurophysiological level, recordings show that elements of spatially extended objects can be grouped into a 
coherent representation by the propagation of a tag of enhanced activity over the representation of the object 
1 (Fig. 1C).

It has been shown both behaviourally and electrophysiologically that the time needed for this tag of 
enhanced neuronal activity to spread over the representation of the object is size invariant: it doesn’t depend 
on the viewing distance2,3. This can be explained by a growth-cone model of attention where the tag can 
propagate at different levels of the visual hierarchy: if an object is viewed from close, its size in degrees of visual 
angle increases but so does the distance to distractor elements, so that the grouping can happen in neurons with 
bigger receptive fields (Fig 2A).

However, it remains unknown what precise neuronal circuitry are responsible for the learning and 
implementation of this scale-invariant tracing.

METHODS

We designed a recurrent neural network with four layers with neurons in feedforward and 
recurrent groups. The feedforward group represents the object at multiple scales and acts as a 

backbone (base-representation) on which activity spreading can take place. It also determines the scales at 
which grouping can happen. Units in the recurrent group spread enhanced neuronal activity over the 

representation of the target object, to label it as one coherent item. The activity of recurrent units is gated by 
units in the feedforward group with the same receptive field: if a unit in the feedforward group is inactive, the 

corresponding unit in the recurrent group cannot participate in the tracing process. Tracing was implemented 
as a disinhibitory process. Feedback and horizontal connections activate VIP interneurons that have a 

disinhibitory effect on their corresponding pyramidal neurons, via inhibition of SOM interneurons. Hence, 
tracing causes the incremental disinhibition of pyramidal units

that represent the target object, which is thus serially labeled with enhanced activity.
We first pretrained two feedforward network, one for the curve-tracing task, trained to classify colinear 

and non-colinear elements, and one for the object-tracing task, trained to classify homogeneous image regions. 
Thereafter we trained the recurrent network to trace curves using reinforcement learning, analogous to the 
training of monkeys. Units in the recurrent groups were trained with RELEARNN, a biologically plausible learning 
rule local both in time and in space, inspired by the Almeida-Pineda algorithm4–6.
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.

RESULTS AND DISCUSSION

The network was trained to trace curves up to 7 pixels long. After training it could generalize to curves 
of arbitrary length, and 2D objects of arbitrary shape (Fig. 1B and 1E). As observed in the visual cortex of monkeys, 
the network serially labeled the target object with enhanced activity.

To probe the dynamics of attentional spreading we examined the difference in activity between the units 
with RFs on the target and distractor curves. We found that activity propagated slower when the target and the 
distractor curves were nearby, just as in the visual cortex of monkeys. Spreading made fastest progress at the 
higher scales, but at places where curves came in each other’s vicinity, lower levels took over and spreading 
slowed down. For objects, as observed in human’s psychophysics experiments, grouping speed depended on the 
size of homogeneous image regions.

Accordingly, dynamics of attentional spreading in the artificial neural network were better fit by a 
growth-cone-model of attention than a pixel-by-pixel model just as was measured in the visual cortex of monkeys 
or in human psychophysics experiments (Fig. 2B and 2C).

We show how a recurrent architecture with dedicated feedforward and recurrent pathways, in combination 
with disinhibitory circuits, can learn to serially propagate enhanced activity to group elements belonging to an 
object at different scales, with neural dynamics similar to those observed in the visual cortex of monkeys or 
measured in human psychophysics experiments

Fig 1. Example stimuli presented to the monkeys (left) and to the network (middle) and electrophysiological recordings from monkeys’ visual cortex. 

A,B,C Curve-tracing task. In this task, the goal of the agent is to make an eye movement toward the blue dot connected to the red fixation point. Recordings 

from monkeys’ visual cortex show that the target curve is identified by a tag corresponding to an enhancement of activity of neurons whose receptive field 

falls on the target curve (C, orange), compared to neurons whose receptive field falls on the distractor curve (C, blue). D,E Object-tracing task. In this task, 

human participants have to report whether a target (D, green dot), is on the same object as the fixation point or not while their reaction time is measured. 

In the version of the task adapted for the artificial network, the agent has to select the blue dot that is on the same object as the red dot.



Fig 2 growth-cone model of attention explain experimental results, both in biological and artificial neural networks, better than a pixel-by-pixel model 

. A Model predictions. The growth cone model predicts that the speed of grouping depends on the distance between curves (curve-tracing task) or the 

size of homogeneous images regions (object-tracing task). The pixel by pixel model predicts that the grouping speed is constant along the shortest path 

between the fixation point and the target. B Model fits for monkey and human data. The growth-cone model better fit measured latency of response 

enhancement in the visual cortex of monkeys (curve-tracing task), or human reaction times (object-tracing task). C Model fits for artificial neural data. In 

both the curve-tracing task and the object-tracing task, dynamics of attentional spreading in the artificial neural network trained only on the curve-tracing 

task is better fit by the growth-cone model.

Keywords: Object-based attention, Recurrent neural networks, Reinforcement learning, Disinhibition ACKNOWLEDGEMENTS

This research has received funding from the European Union’s Horizon 2020 Framework Programme for 
Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3). We 
acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European Union’s 
Horizon 2020 research and innovation programme through the ICEI project under the grant agreement No. 
800858

REFERENCES
1. Roelfsema PR, Lamme VAF, Spekreijse H. Object-based attention in the primary visual cortex of the macaque monkey.

Nat 1998 3956700. 1998;395(6700):376-381. doi:10.1038/26475
2. Pooresmaeili A, Roelfsema PR. A growth-cone model for the spread of object-based attention during contour grouping.

Curr Biol. 2014;24(24):2869-2877. doi:10.1016/j.cub.2014.10.007
3. Jeurissen D, Self MW, Roelfsema PR. Serial grouping of 2D-image regions with object-based attention in humans. Elife. 

2016;5(JUN2016). doi:10.7554/ELIFE.14320
4. Almeida LB. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. Proc IEEE First Int Conf 

Neural Networks. 1987;II:609-618.
5. Pineda FJ. Generalization of back-propagation to recurrent neural networks. Phys Rev Lett. 1987;59(19):2229-2232. 

doi:10.1103/PhysRevLett.59.2229
6. Brosch T, Neumann H, Roelfsema PR. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks. 

PLoS Comput Biol. 2015;11(10):e1004489. doi:10.1371/journal.pcbi.1004489



121. An ANN family for systematic analysis of 
receptive field size and computational depth in the 
primate visual hierarchy

Benjamin Peters1,2*, Lucas Stoffl5, Nikolaus Kriegeskorte1,3,4

1Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA, 2Center for Cognitive 
Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, UK, 3Department of 
Psychology, Columbia University, NY, USA, 4Department of Neuroscience, Columbia University, NY, USA, 
5Brain Mind Institute, Ecole polytechnique fédérale de Lausanne, Switzerland

* benjamin.peters@glasgow.ac.uk

INTRODUCTION/MOTIVATION

Deep feedforward convolutional neural network models (FCNNs) explain aspects of the 
representational transformations in the primate visual hierarchy. However, particular models 
implement idiosyncratic combinations of architectural hyperparameters, which limits theoretical 
progress. In particular, the size of receptive fields (RFs) and the distribution of computational path 
lengths (CPL; the number of nonlinearities encountered) leading up to a representational stage are 
confounded across layers of the same architecture (deeper layers have larger RFs) and depend on 
idiosyncratic choices (kernel sizes, depth, skipping connections) across architectures.

METHODS

Here we introduce HBox, a superset family of neural network architectures designed to break the 
confoundation of RF size and CPL. Like conventional FCNNs, an HBox model contains a feedforward 
hierarchy of convolutional feature maps. Unlike FCNNs, each map has a predefined RF size that can 
result from shorter or longer computational paths or any combination thereof (through skipping 
connections). We implemented a large sample of HBox models (>400) inducing representational stages 
with a diverse distribution of RF sizes and CPL. Using representational similarity analysis, we quantify the 
distribution of RF sizes and CPL in regions of interest in a large-scale human fMRI benchmark (N=8, 19-
32 years, 6 females; natural scenes dataset1).

RESULTS AND DISCUSSION

We show that HBox representations capture an increase in receptive field size and computational path 
length along lower and higher-level regions in the ventral visual stream. Moreover, we find that HBox 
representations capture the relationship between increased receptive field size and visual eccentricity 
in early visual areas. The HBox architecture family illustrates how high-parametric task-performing 
vision models can be used systematically to gain theoretical insights into the neural mechanisms of 
primate vision.

KEYWORDS: convolutional neural networks, visual hierarchy, primate vision, fMRI
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INTRODUCTION

Humans perceive and reason about the world in terms of objects1. Objects are the world’s movable parts, as well as the 

natural substrate of abstract thinking and planning. In contrast, deep neural network (DNN) models of perception and 

action have largely ignored objects as an inductive bias, representing entire scenes in a single, unstructured 

representation. Recently, this has started to change with the advent of object-based DNNs for perception. However, 

object-based DNNs for behavior learning remain scarce (c.f. [2]) and an open challenge. Here, we present a new architecture 

(OBAI3), grounded in the principles of active inference4,5, that extends object- based perception DNNs with action-based 

dynamics and goal-directed planning. Key contributions of our model over previous work2 include the ability to plan actions 

efficiently in closed form, and a Bayesian filtering approach that allows the network to postdictively refine past beliefs, so 

that current beliefs are not irredeemably corrupted by past inference errors.

METHODS

OBAI is based on an earlier model, IODINE6, which uses a recurrent, Siamese architecture to perform iterative variational 

inference on object-structured generative models. By sharing weights between subnetworks that perform inference 

on individual objects, the architecture capitalizes on the symmetry inherent in object-based inference. We extend this 

architecture with a model of action-based object dynamics, and perform temporally coupled inference simultaneously 

across multiple

time points in a sliding window (i.e., Bayesian filtering & 

smoothing). Object features are represented in first- order 

generalized coordinates (i.e., states + derivatives). 

Dynamics are assumed to be approximately linear, and 

perturbed by actions that are operationalized as 

instantaneous accelerations. This formulation allows us 

to efficiently plan goal- directed actions within the 

network’s latent space, by projecting the discrepancy 

between the current

object states and their target states, onto the 

pseudoinverse of the action model. We trained OBAI on 

50,000 4-frame videos of a simulated environment of 

moving, multi-colored sprite objects (Fig. 1).
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Figure 1: Example video frames (rows) from 4 instances 
(columns) of our simulated environment. Arrows in the 
second frame indicate actions (accelerations) applied at 
random points in the environment (actions that target 
the background have no effect).



Training is unsupervised, minimizing a variational ELBO loss that pushes the model to accurately reconstruct the training 

images, while maximizing the temporal predictability and minimizing the complexity of the object representations.

RESULTS AND DISCUSSION

We find that OBAI can accurately segment and reconstruct video frames from our synthetic environment, and performs 

better than an equivalent IODINE model applied to individual frames. Segmentation quality improved from 0.856 to 0.939 

(Adjusted Rand Index of foreground objects; 1.0 is perfect and 0.0 is chance-level), while the mean reconstruction error 

decreased from 1.63 × 10-3 to 9.51 × 10-4 (mean squared error of pixel values ranging from [0, 1]). This is consistent with the 

idea that dynamics can provide important disambiguating cues for object perception. OBAI can also extrapolate the 

inferred object dynamics into the future for video frame prediction, achieving a MSE of 4.1 × 10-3 when predicting 4 

frames ahead. Importantly, this predictive ability enables us to plan actions within this same abstract, compact 

representational space. As a first proof-of-principle for this, we show that OBAI can plan actions towards goals that are 

explicitly specified on a per-trial basis, by showing the model an image of a desired object configuration and letting it 

encode this target configuration into its latent space. (Fig. 2). With this functionality in hand, extending our method to 

more complex tasks (neurosymbolic planning) is only a matter of teaching a further network module to output the requisite 

(sequence of) target states, based on the current object representation. This will be an important breakthrough to 

address in future work, with the overarching goal of developing systems that reason and behave more like humans.

Keywords: Objects, Representation Learning, Active Inference, Variational Inference, Perception, Action Acknowledgments
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Figure 2: Results for one example trial of goal-directed action planning. Top row shows ground truth video frames rendered 
from the simulated environment. Middle and bottom rows show the reconstructed video frames and object 
segmentations produced by the model (respectively). In segmentations, colors indicate the object to which a pixel is assigned. 
The model spends the first four frames passively observing, before actions are permitted. The target configuration is shown 
to the far right.
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INTRODUCTION/MOTIVATION

Neuromorphic engineering promises big improvements for power-efficiency and latency. One 
of the most developed neuromorphic technologies are event-based cameras. Here, we 
implement a GPU-accelerated version of a neuromorphic 3D perception model for visual event 
streams from a stereo setup of event-based cameras [1] in GeNN [2]. We demonstrate that 
the model correctly predicts pixelwise depth from two synthetic visual event streams that 
simulate the stereo setup. We use GeNN's procedural synapse creation [3] for improved 
runtime and memory efficiency.

METHODS

Event streams are generated from dynamic random-dot stereograms (DRDS) [1], which in turn 
are generated from ground-truth depth map images [4]. A single random-initialised boolean 
frame of size 260x346 is updated by flipping each pixel’s polarity with probability 0.2. At each 
time step, events are generated by the modified pixels, with sign determined by the pixels’ 
updated polarity. Left and right input event streams are then generated by shifting events 
respectively right (left) in the left (right) input stream by half of the corresponding depth value 
in a ground-truth depth map image from [4]. The resulting effect is such that neither the left 
nor right event streams contain any spatial scene information by themselves, however the 
original depth map image may be reconstructed by combining information from the two event 
streams.

These left and right event streams are injected into corresponding left and right retina cell 
populations in the neuromorphic 3D perception model [1]. The two retina populations project 
synapses into a leaky integrate and fire (LIF) neuron population, tuned to accumulate evidence 
of horizontal coincidence between spikes from each retina input. To filter out false matches, 
a second LIF population accumulates spike disparity evidence from coincidence detector 
spikes. These spikes excite disparity detector neurons representing local coordinates with 
matching disparity (left minus right retina coordinates), while inhibiting disparity detector 
neurons representing local coordinates with matching cyclopean position (left plus right retina 
coordinates). Mutual inhibition prevents duplicate disparity detector spikes within the same 
line of sight from either input retina. Event depth can then be inferred from disparity, where 
higher disparity indicates closer distance. See [1] for a complete description of the model.

The model is large, with two 260x3462 coincidence populations (for each polarity), a 260x3462 
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disparity population, and the aforementioned synaptic connectivity. To accelerate inference 
with a GPU, we used GPU-enhanced Neural Networks (GeNN) [2], which is a library for 
generating efficient GPU code for spiking neural network models. Due to the large number of 
synapses required for an input this size, we made use of GeNN’s procedural connectivity 
mechanism [3], for generating synapses on-the-fly instead of keeping them saved to memory.

RESULTS AND DISCUSSION

Figure 1 shows the results of running the model on a synthetic office scene. The left panel is 
the ground truth depth map, taken from [4], which is encoded into a DRDS event-stream, as 
discussed above. The network output is compared to ground truth using the pixelwise sum of 
absolute differences (SAD) between ground truth and model prediction.

Figure 1. (left) The depth map used for evaluation and generating DRDS model inputs. Darker 
regions indicate lower disparity, thus more distant, regions. (middle) The depth prediction of 
the model. (right) SAD accuracy metric used for evaluation. Lighter indicates more error. White 
pixels indicate information loss in DRDS generation, where distant events are overwritten by 
nearby events during shifting.
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1. Introduction
Studying brain anatomical deviations from normal progression along the lifespan is essential for 

understanding inter-individual variability and its relation to the onset and progression of several clinical 
conditions [1]. Among available quantitative measurements, mean cortical thickness across the brain has been 
associated with normal ageing and neurodegenerative conditions like mild cognitive impairment, Alzheimer’s 
disease, frontotemporal dementia, Parkinson’s disease, amyotrophic lateral sclerosis, and vascular cognitive 
impairment. Automatic techniques, such as FreeSurfer and CAT12 Toolbox, offer out-of-the-box cortical 
thickness estimates, but with an excessively long computational time (up to 10 hours per volume). Moreover, 
comparison studies have found systematic differences between these approaches [6], with discrepancies 
particularly pronounced in clinical data [4], questioning the reliability of these CT estimations. As more and 
more studies in medicine and neuroscience analyse hundreds to thousands of brain MRI scans, there is a 
growing need for automatic, fast, and reliable tools for cortical thickness estimation.

2. Methods
We here propose DeepThickness, a method for estimating cortical thickness from MRI in just a few 

seconds. The proposed framework, shown in Figure 1, exploits our recent achievements in deep learning 
segmentation methods [8, 9] for extracting grey and white matter segmentation masks and the related 
probability maps from an MRI T1w volume. All these volumes are given as inputs to a Convolutional Neural 
Network trained to compute both the external grey matter surface (or pial) level set (LS) and the 
corresponding distance set (DS).

In this context, the level set is a volumetric representation of the pial surface, in which the intensity of 
each voxel is the clipped signed distance (range=[−5.0, +5.0] mm) between the surface and the voxel itself 
(positive inside and negative outside the surface). Starting with a LS, it is possible to obtain the surface by 
interpolating the zero-level using the Marching Cubes algorithm [10]. Observing that in those voxels where
the grey matter LS (LSGM ) has zero values (i.e., on the pial surface), the white matter level set (LSWM) provides 
values of cortical thickness (since each of those LSWM voxels contains the distance between the pial surface 
and the voxel itself), and the distance set can be computed by “intersecting” the two-level sets of grey and 
white matter. Therefore, we define the DS using the zero LSGM voxels as indices for selecting the LSWM 

interesting values, setting any other voxels to zero, and obtaining a very sparse and synthetic representation 
of cortical thickness.



Figure 1. Framework for cortical thickness and surface estimation.

The supervised model is trained, with LS and DS volumes obtained by FreeSurfer [2] as ground truth. 
The network architecture resembles a 3D U-Net [5], with 4 levels of convolutional layers inspired by [3], and 
with two output branches predicting the pial surface and the cortical thickness. Training, validation, and 
testing volumes are obtained from the AOMIC dataset [7], counting 1311, 100, and 500 volumes respectively.

3. Results
In Figure 2-(a), we show qualitative results highlighting how our method performs with respect to 

FreeSurfer, in both the mesh generation and the cortical thickness estimation. In Figure 2-(b), we compare 
numerically the cortical thickness estimation distributions obtained with FreeSurfer and our method on a 
testing subject.

Figure 2. (a) - Visual results of FreeSurfer mesh and CT overlay, FreeSurfer mesh and DeepThickness overlay, and 
DeepThickness mesh and overlay. (b) - Comparison of the distributions of the cortical thickness values of 12 left 

hemisphere regions for FreeSurfer (blue) and DeepThickness (orange) on one testing subject in mm. Dotted lines
represent average values; higher symmetry in distributions denotes higher region-wise cortical thickness similarity. Similar 

results are obtained for the right hemisphere and other subjects.



4. Conclusion
We present the first DL-based approach for cortical thickness estimation on structural MRI. The 

extraction of cortical thickness distributions in just a few seconds unlocks the ability to quickly draw 
population trajectories for thousands of healthy subjects’ data, creating an atlas with different distributions 
for different brain areas.

Keywords: Cortical Thickness, Deep Learning, anatomical deviations, structural MRI, Alzheimer’s disease,
dementia.
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INTRODUCTION
Compared with 3T MRIs, ultra-high field 7T MRIs with higher resolution and SNR can produce 

images with exceptional anatomical details and can provide clearer tissue boundaries. Thus, 
7T MRIs can contribute to both brain research and clinical management of brain disorders1. 
However, 7T MRIs are cost prohibitive and highly inaccessible which limit the neuroscience for 
more accurate analysis.

To predict satisfactory 7T-like MRIs, a few models have been proposed, including sparse 
learning2-4, random forest5, and deep learning6-8. However, all these methods share the following 
limitations: (1) they require rigid registration on gray and white matters of 3T and 7T MRIs that 
is quite challenging for clinical data training. (2) they often fail to capture sufficient anatomical 
details, and the 3D predictions are often blurred. To further tackle those limitations, we proposed 
a high frequency-based generative adversarial network (HF-GAN) that can predict 3D 7T-like 
images with sharper image contrast and better SNR based on 3T MRIs.

METHODS
We utilized the GAN network to improve image contrast, in which the generator can 

synthesize the 7T-like MRIs and the discriminator helps approach 7T-like to 7T MRIs (Fig. 1). To 
embed more detailed 7T structure into predictions, a reconstruction network for learning high 
frequency information from 7T MRI was introduced. Specifically, in the HF extraction module of 
Figure 1, we transferred the 3T or 7T MRIs into Fourier domain for
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k-space data and multiplied the k-space data by the designed matrix.
In order to accurately evaluate 7T-like predictions, we made Freesurfer segmentation and 

statistical analysis on all paired images (3T, 7T-like and 7T), which can be seen in the Statistical 
Analysis of Figure 1. For sub-cortical regions, we extracted the statistical intensity values 
related to image contrast and conducted comparison of 3T, 7T-like and 7T. Then, we 
implemented the same process on cortical regions via thickness values.

Figure 1: The framework of our proposed prediction method. The left is the network 
training. The right contains the testing, segmentation and statistical analysis.

Figure 2: The visual and quantitative results of our 7T-like predictions. The left shows the visual 
results of three testing cases. The right demonstrates the quantitative results of



sub-cortical and cortical regions by heatmaps.

RESULTS AND DISCUSSION
Our model yields results that are very similar to those of ground truth 7T MRI thus 

significantly improving tissue segmentation. In the left of Figure 2, 7T-like MRIs introducing 
the HF information lead to better vessels representation compared with 3T MRIs. Specially, some 
subtle regions like cerebellum and hippocampus have significantly higher SNR than 3T MRIs. This 
can be attributed to the high frequency learning capability of HF-GAN. Intensity values extracted 
from sub-cortical regions were calculated for all 30 pairs of MRIs. In Figure 2, 7T-like predictions 
share much less difference with 7T compared with 3T vs 7T for most sub-cortical regions. 
Meanwhile, our HF-GAN performs quite well on cortical regions. For instance, according to cortical 
heatmaps of thickness difference in Figure 2, 7T-like temporal lobes always demonstrate much 
less difference with 7T.

We found out which brain regions have been significantly enhanced by our method. Based 
on these findings, we are applying the model to the genetics IMAGEN cohort of 2000 adolescent 
participants assessed with 3T (www.imagen-project.org) who have been followed up with two 
neuroimaging assessments. As IMAGEN has extensive behavioural and neuropsychological 
assessments, we expect that a more refined neuroimaging characterisation might yield new 
insights in the relation of brain structure, development and behaviour.
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INTRODUCTION/MOTIVATION

We have not been able to come up a simulated whole human brain model which has roughly 100 billion neurons and these 

neurons are intensively interconnected via chemical junctions. The difficulty has a few facets. In neuroscience, we 

cannot directly measure the activities of multi-neurons in a healthy human brain. Even if we have the data of each neuronal 

activity available, we do not have a mathematical tool to reverse engineering to reconstruct the complex neuronal networks, 

which basically requires to fit/found at least multi-trillion parameters. European brain project produced two digital brains: 

one is the SpinNakker [1] and the other is the virtual brain [2]. The data which we can directly measure for a whole human 

brain is the BOLD signals for each voxel (a human brain typically has around 100,000 voxels) and the fibre connection 

between each measured voxel (DTI). With these available data, we intend to construct a digital twin brain (DTB) as 

close as possible to its biological counterpart [3].

METHODS, RESULTS AND DISCUSSION

The DTB (Fig. 1A) gives methods and platform of neuromorphic computing and statistic inference and comprises of two 

components. One is to construct and simulate neuronal network of human brain scale and intensively biological data 

driven structure on general GPU-based HPC with appreciable performance [4]. The other is to fit the brain resting-state 

experiment data and mimic 3 real-world functional experiment tasks by a proposed hierarchical mesoscale data 

assimilation method [5]. Firstly, the simulated number of neurons in a neuronal population is proportional to the grey 

matter volume obtained from the T1-weighted MRI image (Fig. 1B). Excitatory neurons and inhibitory neurons are 

included here and the ratio of the number of excitatory neurons to that of inhibitory neurons in each neuronal population is 

set as 4:1. Each neuron is described by the Leaky integrate and fire model with four synaptic currents (AMAP, NMDA, GABAA, 

GABAB). Second, the structural connection
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probability between a pair of neuronal populations is estimated by the row-normalized fibre counts obtained from the DTI 

(Fig. 1B). Thirdly, the connection within each neuronal population inside a micro-column is based on neuroanatomy data 

[6] (Fig. 1B). Finally, with the predefined network size (86B) and in-degree scale (100). [3] provides us with details. To 

meet the requirement of low-latency communication between GPUs for the DTB simulation, we first propose a 

partitioning algorithm and a two-level routing method to balance the data traffic and reduce the degree of GPU 

connections (Fig. 1C). The time series of the BOLD signal for each ROI/voxel are formulated by the Balloon-Windkessel model 

[7], and generate the simulated BOLD signals (Fig. 1D). We proposed a framework of hierarchal mesoscale data assimilation 

to estimate the model parameters [5]. However, due to the huge amount of parameters (more than 10 trillion parameters 

for 86B neurons in total), we take each region of interest(ROI), for instance, the brain region, voxel or each layer of the micro 

column structure according to the resolution of the network model, and assume that the conductance parameters of the 

same type of the neurons in the same ROI follow the same distribution, or, equivalently, share the same hyper-

parameters. The hyper- parameters are estimated and each conductance value is sampled according to the 

distribution with the hyperparameters. The DTB and its biological counterpart has a correlation coefficient above 0.9 in the 

resting state [3]. Therefore, the DTB, equipped with the hierarchal mesoscale data assimilation, can be used to conduct digital 

experiments to explore the phenomena at neuronal and synaptic level (dry experiment). The assimilated model can be 

validated by mimicking the cognitive action task by simulating the brain by the assimilated model, compared with 

the results of the real-world experiments (in-action experiment) (see Fig. 2).



Fig. 1. Work flow of the digital twin brain (DTB). (A) The DTB is constructed with different numbers of spiking neurons to 

mimic the brain activity at three resolutions: regional, voxel and micro-column. The DTB containing 86 billion neurons and 10 

trillion synapses is simulated on 10,000 GPU cards and achieved a time-to-solution of 560. Resting-state and task-based 

digital experiments were performed with the DTB (see Fig. 2 and 5). Besides, information flow and deep brain stimulation 

were also explored with the DTB (see Fig. 3 and 4). (B) Multi-modality MRI data (i.e., diffusion tensor imaging (DTI) and T1-

weighted imaging) and a micro-column connection map were used to construct a probabilistic connection network. The 

micro-column is an elaborate network composed of six layers (L1, L2/3, L4, L5 and L6) and two types of neurons 

(excitatory and inhibitory neurons), whose inner



connections are defined based on the neuroanatomy of the primary visual cortex of the cat. (C) An illustration for our two-

level routing system, with which we could balance the data traffic and reduce the degree of graphics processing 15 units 

(GPUs) connection. (D) The parameter and model setting for the DTB. The Leaky Integrate- and-Fire neuron model was used 

to model spike activity. Then the firing rate, obtained by counting the number of spikes of neural activity over a sliding 

window, is fed into the Ballon Windkessel model to form the time series of the simulated blood oxygenation level-

dependent signal. The synaptic conductance of AMPA and GABAA are tuned to fit the empirical BOLD signal from functional 

MRI. (E) An illustration for our hierarchical mesoscale data assimilation method. The hierarchical brain assimilation 

estimated the hyperparameters by iterating two processes: simulation and filtering the hidden states by diffusion 

ensemble Kalman filter (EnKF). Also see Supplementary Materials for more details.

Fig. 2. DTB in action (100 M neurons, voxel version). (A) Workflow for the DTB in action. We firstly simulate the BOLD signals 

of the reference brain regions to obtain electric input currents. Then we injected the above currents into the DTB to yield the 

digital task brain. (B) A schematic illustration of the auditory and visual evaluation task.

(C) Pearson correlations between the empirical and assimilated BOLD signals at both voxel- and region-level. (D)



The illustrations of the empirical and the assimilated BOLD signals with a time lag of 4 for each region in right hemisphere 

during the visual evaluation task. (E) A schematic illustration of the digital brain virtual experiment, in which we injected 

current during the task from subject 1 into the digital resting state brain of other subjects, to yield a digital task brain of 

other subjects. (F) The activation patterns of the assimilated digital task brain and its corresponding biological brain. (G) 

The predicted performance based on the assimilated DTB of the visual evaluation task. Also see fig. S8 for the auditory 

evaluation task and Supplementary Materials for more details

Keywords: digital twin brain, meso-scale data assimilation, resting state, spiking neuronal networks, two-level routing 

method
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INTRODUCTION

A key step for understanding how the brain processes sensory information is the ability to quantify how much of the information 
that a neural population X encodes about a specific feature of a sensory stimulus S is transmitted to a downstream population 
Y [1]. Traditional methods rely on the Wiener-Granger causality principle to quantify how much overall information is 
transmitted between simultaneously recorded neuronal signals. These methods include both parametric measures, such as 
Granger Causality, and nonparametric ones, such as information-theoretic Directed Information (DI) [2,3]. However, while 
these established measures allow quantifying the magnitude and directionality of information transfer, they provide no 
insight into the content of the information being communicated.
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METHODS
In this work, we defined a new measure, which we called Feature-specific Information Transfer (FIT). FIT is a measure of 
information transfer that quantifies how much of the directed information transmitted between neural signals is about specific 
external target variables, such as a feature of a sensory stimulus S (Fig.1A,B). To define FIT, we leveraged on the mathematical 
framework of Partial Information Decomposition (PID) [4]. PID extends classical Shannon’s information theory and allows 
breaking down the joint mutual information that several source variables carry about a target variable into pieces of 
redundant, unique and synergistic information. Within this framework, we defined FIT(S:X→Y) as the amount of information 
that is redundant between the past of a sender neural signal X and the present of a receiver signal Y about a specific stimulus 
feature S, which is also unique with respect to the past of the receiver signal Y (Fig.1C). Such definition uses PID to combine the 
Wiener-Granger causality principle of information transfer with the content specificity about a target variable of interest into a 
single measure. Since it does not make assumptions on the data distributions, FIT can be applied to any type of simultaneously 
recorded neural signals. We provided a permutation-based null hypothesis for FIT that can be used to identify scenarios 
where S induces temporally-lagged covariations in X and Y and there is no actual interaction between the two neural 
signals. Additionally, we defined a conditioned version of FIT, that we named cFIT. cFIT(S:X→Y|Z) quantifies the amount of FIT 
about S transmitted from X to Y that, at the same time, is not present in the past of a potentially confounding neural signal Z.

RESULTS AND DISCUSSION

We validated FIT on simulated data showing that it only captures information transfer that is about specific stimulus features, 
correctly discarding the transfer of noise between neural signals, while traditional measures of directed communication such 
as DI are sensitive to the transfer of both stimulus and noise. We tested the permutation based null hypothesis and the cFIT 
measure on simulated signals to prove how to deal with variables that could potentially act as confounder of FIT. Then, we tested 
FIT and cFIT on several previously published real datasets. Analyzing electroencephalographic (EEG) recordings [5,6], we could 
establish inter-hemispheric directed information transfer about visual features relevant for the perception of faces. Using 
magnetoencephalographic (MEG) recordings [7,8] we could establish sensory-specific communication (including gamma-band 
feedforward communication of visual information relevant for behavior). Importantly, such effects could not be revealed by 
traditional measures such as DI.

In summary, FIT extends previous methodologies that quantify the overall transfer of information between neural 
populations, providing insight on the content of communication. Our results indicate that FIT can be an important tool to unveil 
novel properties of sensory information processing in the brain that cannot be detected using standard measures of 
information transfer.

Keywords: Information transfer, sensory processing, Wiener-Granger causality, partial information decomposition, systems 

neuroscience
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X to Y about a specific target variable, such as a feature of a sensory stimulus S. B) DI is sensitive to the total neural activity, while 
FIT looks specifically to the stimulus-informative neural activity. Stimulus-informative activity is a subpart of the total 
activity, therefore FIT is upper bounded by DI. C) Both DI and FIT satisfy the Weiner-Granger causality principle. DI is defined 
as the conditional mutual information between the past of X and the present of Y given the past of Y. FIT is defined within the 
PID framework as the stimulus-information shared by the past of X and the present of Y which, at the same time, is unique with 
respect to the past of Y.
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1. Introduction

What makes a system intelligent, and what level of abstraction best captures its functional principles? We 
propose that the human brain must integrate internal models with external evidence, since the unique 
human sensorimotor skills and cognitive abilities depend on extracting information from sensory input, 
contextualised by our intentions and prior knowledge, and brain states. The connectomic foundations of 
the human cerebral cortex reveal large-scale cortical circuits organised into highly interconnected 
processing streams flowing backwards to and forward from sensory areas, and intra-areally between 
specialised functional association regions (e.g. [1]). In the awake state, the top-down negotiation of world 
knowledge and the bottom-up evidence of sensory information allow for the disambiguation of sensory 
data, optimising goal-directed behaviour, guiding flexible decision-making [2], and the simulation of 
imaginary content based on perceptual memory. Investigating how the integration of sensory signals with 
internal models maps onto cortical neuroanatomy requires a paradigm that allows us to disentangle these 
signals, including but not limited to top-down modulation.

2. Methods

We chose visual occlusion as a paradigmatic example where top-down knowledge provides input layers 
with additional contextual information beyond what is available from bottom-up thalamic input [3]. To 
investigate how contextual feedback processing influences neuronal activity in the primary visual cortex, we 
presented identical stimuli from 24 partially occluded natural scene images to mice, monkeys, humans, and 
a deep convolutional neural network model. This approach isolates cortical retinotopic regions that do not 
receive informative, direct thalamic bottom-up input, but lateral and cortical top-down input. We recorded 
mice activity with two-photon calcium imaging of V1 L2/3 and L5 neurons in the primary visual cortex of 
awake, head-fixed mice [4]. The monkey experiment is based on V1 spiking activity data recorded at 
comparable retinotopic locations in deep layer 5 cells [5]. In a 3T human fMRI experiment, we measured top- 
down activity in non-stimulated areas of V1 and V2 and compared it to visual processing models [6]. Finally, 
we trained an artificial model to predict the top-down projected information of occluded regions of an image 
in a self-supervised way [7].



Figure 1. The same occluded images were presented to mice (6), monkeys (24), and humans (24) and while testing a self- 
supervised deep neural network.

3. Results

Mice: We could decode the stimulus identity from non-stimulated regions of mouse V1, with slightly 
improved decoding accuracy after behavioural training [4]. We also see a separation of neuronal populations 
responding to either feedforward or feedback conditions. Our results are consistent with a predictive 
processing model of visual perception.

Monkeys: We found that V1 neurons responded rapidly and selectively to occluded scenes, and contain 
information to decode scene identity, indicating an overlap between visually-driven and contextual 
responses. Using RSA [8], we showed how the structure of V1 representations of occluded scenes correlates 
strongly with the representations of the same scenes in humans measured with fMRI.

Humans: Consistent with our previous findings [9], we found that non-stimulated regions of human V1 
and V2 contain contextual information fed back from higher visual areas. Furthermore, behavioural line 
drawings of subjects asked to sketch the missing information provided the best model to explain V1/V2 
activities of non-stimulated occluded regions [6].

Artificial neural network: We compared the layer activations in our network to human brain activity fMRI 
data from V1 while viewing the same images. We found that the self-supervised network completed the task 
in a more brain-like manner, outperforming a classical object-recognition supervised network (VGG16) in 
terms of similarity to fMRI data [7].

4. Conclusion

We combined multi-species evidence from experimental and theoretical perspectives describing the 
information content, microcircuitry, temporal dynamics, and cognitive functions of top-down cortical 
streams encoding contextual information and perceptual internal models. Such multiscale empirical 
frameworks, validated by computational models, will be necessary if we are to confront the neuronal 
explanandum of cognitive functions and infer behaviour from microscale anatomy and function.
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INTRODUCTION

In a recent paper [1], Wunderlich and Pehle introduced the EventProp algorithm that allows learning by gradient descent on 

exact gradients in spiking neural networks. Moreover, the backward pass of the EventProp algorithm is event-based so that 

it is a natural fit for our GPU enhanced neuronal networks (GeNN) framework [2,3]. We have, therefore, implemented 

EventProp in GeNN and investigated its learning performance on increasingly challenging benchmarks, including the 

Spiking Heidelberg Digits (SHD) classification task [4]. Using a typical loss function we observed a failure to learn the SHD task. 

Here we present work that analyses this failure and solves it through “loss shaping”, the definition of a loss function that is 

specifically tuned to enable rapid and successful learning of the task.

METHODS

EventProp was implemented in the GeNN framework using the PyGeNN interface [5]. Besides user-side definitions of custom 

neuron and synapse models, only one minor change in GeNN was required: We introduced the new construct of a pre-

synaptic action at spikes or spike-like events in order to efficiently implement the event-based backpropagation of errors in 

EventProp. The code is available at https://github.com/tnowotny/genn_eventprop. We also slightly extended the 

EventProp formalism to make explicit how to handle a larger family of loss functions

of the form 𝐿′ = 𝐹 ( 𝑇
0  𝑉(𝑉(𝑡), 𝑡) 𝑑𝑡), where F is an at least once differentiable function, instead of the originally

described 𝐿 = 𝑇
0  𝑉(𝑉(𝑡), 𝑡) 𝑑𝑡.

RESULTS AND DISCUSSION

The GPU acceleration of GeNN has allowed us to test EventProp extensively on increasingly challenging learning benchmarks. 

We find that EventProp performs well on some tasks, such as the YinYang benchmark [6] and latency encoded MNIST [7] but 

for others, such as the SHD task [4] learning initially failed.

We have analysed the underlying issues in detail and discovered that they relate to the nature of the exact gradient of the 

employed loss functions. In particular, the exact gradient does not contain information about loss changes due to the 

emergence of additional spikes or the removal of spikes. It only carries information related to changes in spike times. 

Depending on the details of the task and the loss function, descending the exact gradient with

∫

∫ 𝑙
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EventProp can, therefore, lead to the "accidental" deletion of important spikes and so to an inadvertent increase of the loss 

and decrease of classification accuracy.

Problems of a similar flavour are well-known and are usually solved by regularisation. However, regularisation encourages 

appropriate activity across all neurons whereas we found that for the SHD data specifically the most useful hidden spikes 

were deleted due to the employed loss function. Regularisation was hence too unspecific to recover learning.

Figure 1: Summary of SHD classification results. The result for back-propagation through time with surrogate gradient is 

from [5] and the e-prop results from [6]. "ffwd" are feed-forward networks, "recur" recurrent networks. "xval" refers to "leave 

one speaker out" cross-validation. The bars are the average fraction of correctly predicted digits after 300 training epochs, 

for the cross-validation averaged over the 10 folds of left out speakers, for the full training and testing averaged over 10 

runs with different random seeds. The error bars are standard deviations for the same repeats. In the cross-validation, mean 

and standard deviation are additionally averaged across two

runs with different seeds.

We have augmented the EventProp algorithm to support a wider class of loss functions and with a loss function that considers 

the cross-entropy of average output voltages instead of the average of the cross-entropy of output voltages, learning can 

be restored.

The last twist in the tale is that this new loss function results in very small gradients for hidden layer neurons because 

the timing of hidden spikes is now almost irrelevant when calculating the average voltage of output neurons. This in 

turn leads to extremely slow learning. To achieve faster learning, we therefore introduced a weighting term in the loss 

function that favours early useful hidden spikes and so introduces a beneficial additional gradient for input-to-hidden synapse 

weights. The headline classification results for SHD are shown in Figure 1. The weighted loss of averaged voltages (“sum_exp”) 

allows us to achieve state of the art classification accuracy .

Keywords: Spiking Neural Network, EventProp, Spiking Heidelberg Digits, Gradient Descent, Regularisation
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INTRODUCTION
The transition between brain states is physiologically induced by a combination of 

neurotransmitters where acetylcholine (ACh) has a prominent and relevant role1. 

Cholinergic action in the cerebral cortex takes place largely through muscarinic receptors 

which are involved in a range of critical functions related to cognition, behavior and motor 

processing2. Specific spatiotemporal control of the ACh-receptor activation can 

contribute to the understanding of the role of ACh in the different cortical brain states 

and in its transitions3 and to the exploration of a potential therapeutical tool. In this 

study, we explored the use of photopharmacology, a new approach that allows the light 

activation of photoswitchable drugs in the brain. Specifically, we studied the role of M1 

mAChRs on the modulation of cortical spontaneous slow oscillations (SO)(Fig. 1a) and of 

epileptogenic activity using a novel photoswitchable M1 mAChR agonist, 

benzylquinolone-carboxylic acid–azo-iperoxo (BAI), and a M1 mAChR antagonist, 

cryptozepine, respectively.

METHODS

To study the effect of BAI on cortical dynamics in vitro, first we obtained BAI cis-

isomer, which has a lower affinity for M1 mAChRs (inactive molecule). We applied UV 

light (365 nm) for 5 min to the stock dilution (100 µM BAI), then it was diluted to 1 µM 
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BAI and added the interphase chamber bath in the dark. Finally, white light was 

applied to the slice to obtain the trans- isomer (active molecule). In the in vivo 

experiments, BAI was delivered inside a well made over the craniotomy, following the 

same experimental sequence as in vitro4. In the case of cryptozepine, we performed trans- 

(less active isomer) isoform bath application in the presence of muscarinic agonist 

iperoxo and then slices were exposed to 365 nm light to obtain cis-cryptozepine (more 

active isoform).

RESULTS

We first characterized the cis- and trans- BAI effects on SO to identify a concentration 

that effectively modulated the oscillation. Once we identified this concentration (1 μM) 

we performed photoswitching experiments to modulate SO with light. We departed from 

SO as control condition and then applied 1 μM of cis-BAI, and, as expected, no significant 

changes were observed. Conversely, illumination of the slices with white light (cis- to 

trans- photoconversion) produced a significant increment in the oscillatory frequency 

(Fig. 1b). In vivo experiments using BAI were consistent with these results as illumination 

of brain containing cis-BAI produced a significant increase of the oscillatory frequency.

Next, we tested the effect of trans- and cis- cryptozepine in the presence of muscarinic 

agonist iperoxo. In vitro bath application of the muscarinic agonist iperoxo evoked 

seizure-like activity, characterized by recurrent high amplitude activity. Seizure-like 

activity was not affected by the application of trans-cryptozepine while photoconversion 

(trans- to cis-) led to a total blockage of epileptiform discharges.

Our results demonstrate that the light-mediated activation of the photoswitchable M1 

mAChR agonist BAI modulates the cerebral cortex network activity, inducing a significant 

increase in the SO frequency, in vitro and in vivo. Epileptiform seizures evoked by 

muscarinic agonist iperoxo were supressed by light-activation of photoswitchable M1 

mAChR antagonist cryptozepine. In conclusion, we have demonstrated a new method 

for modulating cortical activity of the brain. This method is based on the control of 

endogenous M1 mAChR activation by means of light, but without the need of gene 

manipulation, as is the case in optogenetics. This opens the door to the use of 

photoswitchable M1 muscarinic ligands for spatiotemporal modulation of human brain 

networks as a therapeutical tool.



Figures

Figure 1. Effect of BAI isomers and photocontrol of slow oscillations using BAI direct 

illumination. (a) Cortical slice scheme and description of slow oscillations in the form of 

Up and Down states. (b) LFP traces (µV) and raster plot of relative firing rate (normalized 

MUA) during control condition, application of 1µM cis-BAI and photoconversion to 1µM 

BAI trans-BAI with white light.
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INTRODUCTION/MOTIVATION

Interictal epileptiform discharges (IEDs) are theorised to be transient electrographic features 

of excessive inhibition within the hyperexcitable cortex 1. IEDs are seen within parts of the 

cortex which generate seizures (ictogenic cortex) and those which do not (irritative zone). The 

current literature states that a lack of IED variance indicates an ictogenic zone 2. In contrast, 

patients with excess spike variance have a worse post-surgical outcome 3. Furthermore, studies 

suggest that resectioning a larger proportion of the irritative zone can improve post-surgical 

outcomes. Still, in some patients, this needs to balance with safety and risk of cognitive deficit
4. We wanted to answer the questions, one, can we define different groups of IEDs by their 

dynamics and two, do IED group dynamics differ between interictal and preictal states?

METHODS

In five patients with refractory epilepsy who underwent SEEG implantation, we clustered IEDs 

using a machine learning (ML) algorithm. For each cluster, we calculated inter-ictal and pre- 

ictal spike rates. Interictal data was collected 24 hours before the seizure and pre-ictal data 

one hour before the neurophysiological onset of the seizure. In addition, we calculated a z-

scored spike rate. Pre-ictal spike rates were corrected using interictal Z-scores.

mailto:stuart.d.w.smith@ucl.ac.uk


RESULTS AND DISCUSSION

We were able to cluster IEDs by spatial, temporal and morphological variance. The clustering 

of IEDs reveals significant dynamics. Cluster pre-ictal dynamics deviate from the interictal 

baseline and are heterogenous within the irritative cortex. In clusters within or near the 

ictogenic onset, the majority of clusters demonstrated a significantly increased IED rate in the 

hour preceding the seizure. We conclude that ML can be used to differentiate spikes and has 

the potential to delineate between irritable and ictogenic cortex. This information could be 

used to support surgical planning.

Keywords: Stereo-electroencephalography, ictogenic zone, irritable cortex, interictal epileptiform discharges, machine 

learning, pre-ictal states.

REFERENCES

1. Michelson HB, Wong RK. Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J 
Physiol. 1994;477(Pt 1):35-45.

2. Conrad EC, Tomlinson SB, Wong JN, et al. Spatial distribution of interictal spikes fluctuates over time and 
localizes seizure onset. Brain. 2020;143(2):554-569. doi:10.1093/brain/awz386

3. Klimes P, Peter-Derex L, Hall J, Dubeau F, Frauscher B. Spatio-temporal spike dynamics predict surgical 
outcome in adult focal epilepsy. Clinical Neurophysiology. 2022;134:88-99. 
doi:10.1016/j.clinph.2021.10.023

4. Bautista RED, Cobbs MA, Spencer DD, Spencer SS. Prediction of Surgical Outcome by Interictal Epileptiform 
Abnormalities During Intracranial EEG Monitoring in Patients with Extrahippocampal Seizures. Epilepsia. 
1999;40(7):880-890. doi:10.1111/j.1528-1157.1999.tb00794.x



132. Selectively branched higher-order 
thalamocortical axons underlie functional forebrain 
subnetworks

Diana Casas-Torremocha1+*, César Porrero2+, Mario Rubio-Teves2, Arnau 
Manasanch1, Javier Rodríguez-Moreno2, María García-Amado2, Carmen 
Alonso2, Lucia Prensa2, María C. Ballesteros-Briones3, Cristian Smerdou3, 
Takahiro Furuta4, María V. Sanchez-Vives1,5, Francisco Clascá2

1. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
2. Anatomy and Neuroscience Departmet, Autonoma de Madrid University, Madrid, Spain
3. Division of Gene Therapy and Regulation of Gene Expression, CIMA, Navarra University and 

Idisna, Pamplona, Spain
4. Department of Oral Anatomy and Neurobiology, Osaka University, Osaka, Japan
5. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

+ both authors share first authorship

*email: dicasas@recerca.clinic.cat

INTRODUCTION

The thalamus is a central hub of the forebrain networks. Thalamic axons in different nuclei target the 
cerebral cortex and other forebrain structures in overlapping and divergent/convergent patterns.

The best characterized thalamic projection axons are those of the “First-Order” (FO) nuclei, which 
orderly relay to a single area of the cortex signals from subcortical sensory or motor pathways. 
Thalamocortical axons from sensory relay nuclei neurons strongly innervate the middle layers of their 
target cortical area in a spatially focused manner. Thalamic axons arising from neurons in different 
domains of these nuclei are overall organized in a point-to-point fashion and thus create an 
isomorphic representation of the corresponding sensory receptor sheets in a primary area of the 
cerebral cortex [1]. On the other hand, “Higher-Order” (HO) thalamic nuclei axons mainly send back to 
the cortex the signals received from the cortex itself, and usually branch and innervate several separate 
cortical areas and often the striatum as well [2]. However, the functional logic behind the divergent and 
widely diverse axon arborization patterns of HO axons remains poorly understood (review in [3]).

To address this issue, we systematically compared axonal morphology and cortical targets of axons 
originated in different domains of the mouse posterior thalamic nucleus (Po), a HO nucleus, at the 
population and single-cell resolution levels. In addition, we applied electrical stimulation in vivo in 
different Po regions and recorded Local Field Potential (LFP) changes in the cortical areas that their axons 
target.
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METHODS

Experiments were performed on adult male C57BL/6 mice. All procedures were conducted under 
protocols approved by Ethics Committee at Autónoma de Madrid University and Hospital Clinic of 
Barcelona and the competent Spanish Government agency (BOE 34/11370-421, 2013), in accordance with 
the European Community Council Directive 2010/63/UE.

Stereotaxic surgical procedures for anatomical experiments were conducted under deep 
anaesthesia. For single cell experiments, mice were electroporated with Sindbis Pal-eGFP RNA to 
individually label thalamic neurons and reveal the full extent of their cell axons as described by [4]. To 
anterogradely label axons from small populations of neurons located in restricted domains of Po, we 
made BDA deposits trough iontophoretic injections. For electrophysiological experiments, mice were 
deeply anesthetized and the extracellular LFP activity was recorded by means of 32-channel 
multielectrode arrays (MEA) covering the motor and somatosensory cortical areas. A stainless-steel 
bipolar electrode was placed in the Po nucleus and single pulses, with intensities ranging from 20 to 160 
µA, were delivered to evoke responses in the cortex. Brain histological processing was performed in 
order to precisely identify the site of stimulation and location of the MEA contact electrodes.

RESULTS AND DISCUSSION

We demonstrated that the axons from the Po systematically branch to target several cortical (and 
often also striatal) domains that process sensory/motor information about the same body part. Single-
cell and micropopulation tracing data reveal that Po neurons innervating domains related to the same 
body part are clustered together; as a result, a continuous “connectivity map” links each point of Po 
with multiple cortical areas, in a somatotopic fashion.

Micro-electrocorticogram recordings reveal that Po activation elicits simultaneous LFP responses 
in separate cortical foci, at locations that match the observed axon branching motifs. Selectively branched 
thalamocortical axons may thus favor activity coupling across specific subnetworks of cortical and 
subcortical cell populations, contributing to the creation of functional networks.

These observations reveal that HO neuronal axons may modulate functional connectivity among cortical 
and striatal neuronal populations involved in movement/sensation of specific body regions, 
revealing a new mode of interaction between the thalamus and the cortex.

Keywords: Thalamus; Cortex; Somatosensory system; Posterior nucleus; Networks
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INTRODUCTION

We are currently in the UN Decade of Healthy Aging, whose main goal is to understand the interindividual variability 

in brain aging and associated cognitive decline to enable independent living into old age. This involves using empirical data 

to characterize the aging brain and to develop key aging theories, which then form the basis for brain models and simulations 

to eventually predict individual brain changes. In this line of research, however, the question arises to what extend 

general principles of brain-phenotype relationships reflect individual particularities. To examine this question, we 

selected one region of interest, the angular gyrus (AG), which has been implied to play a key role in age-related 

cognitive decline [1]. We first calculated multimodal brain- phenotype relationships for the AG in a large population-

based cohort of older adults, 1000BRAINS [2], after which we switched the perspective to the individual, and compared 

these general trends to exemplary extreme individual profiles in the same cohort.

METHODS

For the cytoarchitectonically defined AG areas PGa and PGp (part of the the JulichBrain [3]), we extracted (1) GMV (T1-

weighted 3D anatomical image); (2) resting state functional connectivity (RSFC; 300 functional EPI images) and (3) 

structural connectivity (SC, multi-shell diffusion-weighted data) in 499 subjects (mean age = 68

± 7 years; 1000BRAINS). We calculated multiple regressions (forward-selection) between the GMV of left and
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right (l/r) PGa/PGp and a) age, b) cognitive performance, c) lifestyle and d) either GMV, SC or RSFC of all regions belonging to 

the JulichBrain (implemented in the EBRAINS multilevel atlas (https://ebrains.eu)). EBRAINS was consulted for characterizing 

the AG on the genetic and molecular level. Finally, we selected ten subjects, who fell within the highest (High#6-10) and 

lowest (Low#1-5) 25% of the AG GMV, derived their individual profiles and compared them to the obtained group 

trends.

RESULTS

Group analyses revealed heterogeneous patterns of whole-brain associations between the AG and regional GMV, RSFC and 

SC (Fig. 1A). EBRAINS-derived information revealed distinct genetic and molecular organization of the AG parts (Fig. 1B,C). 

Significant (p <.05) age-related decreases in GMV were evident for all AG parts, with the strongest decrease for rPGa. In 

addition, there was a heterogeneous relationship between AG GMV, cognition and lifestyle. For example, we found positive 

relations between GMV of lPGa and figural fluency and rPGa and semantic word fluency. Moreover, rPGa correlated 

positively with sports, while rPGp was negatively related to BMI and alcohol consumption. Focusing on the extreme 

individual profiles (Fig. 2B), the following can be deduced: All ten subjects deviated significantly from the regression line. 

For example, subject Low#3 performed below average in AG-related cognitive functions, such as semantic verbal fluency, but 

above average in reasoning and visual working memory. In contrast, subject High#10 shows low performance in most of the 

cognitive tasks assessed.

DISCUSSION

Based on the multimodal group results, the AG can be considered as a heterogeneous structure of the aged brain: First, 

we found the greatest decrease in GMV in rPGa, consistent with the theory that the right hemisphere has a greater age-

related decrease compared with the left hemisphere [4]. Second, AG parts were associated with different cognitive 

abilities or lifestyles, which was complemented by both different covariance patterns of GMV, RSFC, and SC as well as 

genetic and molecular organization. However, especially important with respect to emerging brain modelling approaches 

[5] that build upon group-derived theories, individual profiles deviated considerably from the global conclusion drawn 

from the group study. Our findings in older adults underscore the need to carefully acknowledge generalized findings when 

dealing with individual conditions in clinical practice.
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Figure 1: A Brain regions being associated with GMV (Gray Matter Volume) of the AG (Angular Gyrus) subdivisions; 
B Normalized Receptor Density Fingerprints of the AG subdivisions; C Gene expressions of the AG subdivisions. 
Figure adapted from [6].



Figure 2: A Relation between GMV (Gray Matter Volume) of the AG (angular gyrus) subdivisions and i) Age, ii) Cognition, 
and iii) Lifestyle; B Individual profiles for Low #1-5 /High #1-5 in i) Lifestyle and ii) Cognition. Figure adapted from 
[6].
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Introduction.
The two basic processes underlying perceptual decisions—how neural responses encode stimuli, and how they 
inform behavioural choices—have mainly been studied separately (Panzeri et al., 2017). Mediation analyses, 
however, can tackle these questions together by analysing neural activity as an intermediate step of behaviour 
production (Brochard et al., 2020). However, it remains unclear which component of a neural response supports 
such processing. We propose here a data-driven mediation analysis applied on the parameters of a descriptive 
model of neural response. This approach allowed us to identify which parameter in the neural activity (e.g. its 
amplitude, peak time, build-up speed) mediates the transformation of perceptual entries into behavioural 
production.

Methods.
We analysed intracranial EEG (IEEG) recordings of 62 pharmacoresistant epileptic patients performing a visual 
search task. Patients had to identify a T letter in a group of distractor letters, with varying contrast for the 
distractors. We compared two forms of mediation analysis (i) using information- theoretical measures 
applied at each time point (Combrisson et al., 2022; Cover and Thomas, 1991) and (ii) applied on the parameters 
of a neural-response model (Figure 1A). The model consisted of 8 free parameters identified at the single-trial 
level using gradient descent. Each parameter captured different components of the signal’s shape: its 
peak time, its amplitude, its initial and finishing baselines and the concavity and window of activity of the 
signal before and after the peak.

Results.
We identified a network of regions mediating the effect of the task difficulty on the participant’s 
response time. The instantaneous approach of mediation analysis revealed multiples areas in the prefrontal, 
visual and sensorimotor regions. The shape mediation analysis then, not only supported these results, but 
also revealed a mediation through the concavity of the signal in three additional areas of the temporal and 
motor regions (Figure 1B).

Discussion.
This work demonstrates the potential of a mediation analysis at the crossroad of data-driven and model-
driven approaches. Not only did it separate behavioural effects from perceptual effects, but our work now 
characterises more precisely which component of a neural response support such transformative 
processes. While it does not establish causal links, nor does it yet use a bio-realistic
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response model, our work empowers iEEG analysis in two interesting ways: 1) going beyond 
instantaneous activity analysis, it increases statistical efficiency by decreasing the number of statistical tests and 
enables scanning entire brains in search of regions of interest, 2) it decomposes the signal in interpretable 
features allowing for a characterisation of the region’s hidden dynamics.

Figure 1. Neural parameters mediating task difficulty and response time (A) Model of neural response across time captured by 8 
parameters fitted at the single-trial level. Namely the initial (b1) and finishing baseline (b2), time window of integration (w1) and 
depletion (w2), concavity of integration (p1) and depletion (p2), peak (c) and amplitude (A), (B) Network of regions for which the concavity 
(i.e. p1 and p2) mediated the effect of task difficulty on response time (p<0.05, FDR corrected)
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INTRODUCTION/MOTIVATION

First attempts to virtually age the brain using modelling approaches have revealed promising results, but still face difficulties 

in reflecting the large inter-individual variability in aging and its origins, e.g. lifestyle and body-related factors. To inform 

more theoretical frameworks, we, here, focused on exploring the contribution of specific lifestyle habits and obesity, 

to the variability in connectivity of major white matter tracts [1, 2] in two studies including older adults from the 

population-based 1000BRAINS cohort [3]. To obtain meaningful biological insights we employed an advanced diffusion 

model, Neurite Orientation Dispersion and Density Imaging (NODDI; [4]), allowing the detailed analysis of white matter 

with specific parameters, e.g. the density and angular variation of neurites.

METHODS

The first study assessed lifestyle factors in 591 (273 females, mean age 67 6.5 years) participants including smoking 

(pack-years), social integration, alcohol consumption (grams per week) and physical activity [5], as well as a risk score of these 

variables, reflecting an accumulated unfavorable lifestyle at higher values [6].

In a second study, we focused on body-related aspects, including BMI, waist-to-hip ratio (WHR) and A Body Shape Index (ABSI) 

in 558 participants (251 females, mean age 67  7.3 years).

For both studies, fractional anisotropy (FA) and mean diffusivity (MD) were estimated from the diffusion tensor, neurite 

density from intra-cellular volume fraction (ICVF) and angular variation of neurites from orientation dispersion index 

(ODI). After registration of individual parameter maps onto a template (DTI-TK) and skeletonization (TBSS, [7]), 

associations between white matter parameters and lifestyle factors (covariates: age, sex, education and BMI) and obesity 

(covariates: age, education, hypertension, daily physical activity) were tested (Threshold-Free Cluster Enhancement, p < 0.05).
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RESULTS AND DISCUSSION

In general, a more unfavourable lifestyles risk score and obesity were related to unfavourable white matter 

characteristics, e.g. lower FA (fig.1). Healthier lifestyle habits, e.g. higher social integration and physical activity, were related 

to better preserved white matter tracts, e.g. lower MD (fig.1).

Higher physical activity was associated to higher ICVF and lower ODI in almost all included major fibre tracts (fig. 1). In males 

but not in females, more visceral fat (WHR) correlated with lower ODI, specifically in projection fibres,

e.g. the corona radiata as well as with lower ICVF again in almost all white matter tracts included in the skeleton with greatest 

effects in the corticospinal tract and cerebellar peduncle.

The present results suggest that lifestyle and body-related factors may explain variability in older adults’ brains,

i.e. white matter microstructure. Physical activity is generally thought of as a promising factor for healthy brain aging [8]. 

Here, the usage of NODDI parameters enabled a deeper mechanistical insight: The microstructural differences associated 

to physical activity hint at concurrent higher neurite density (ICVF) and more coherently organized axons (ODI, [9]) in many 

large-scale fibre tracts, which may be favourable for transmission capacities [10]. Interestingly, a link between higher WHR, 

as one parameter for obesity, and poorer white matter fibre tract integrity was only observed in men, but not in women. 

Interestingly, both lower physical activity and higher WHR showed global associations across all deep white matter tracts, 

thus affecting its structural integrity per se.

The current results show that age itself might be an important, but not the only factor, affecting the brain. To increase 

the accuracy of current model-based approaches, the need arises to include other factors, such as for instance, lifestyle, 

genetics and diet.

Keywords: lifestyle, body-related factors, aging, white matter fibre tracts, neurite morphology

Figure 1. Selection of slices (from superior to inferior) showing the associations between lifestyle factors and voxels of the 

skeleton overlaid onto the mean FA image of the study sample. Convention is radiological (left is right).



Figure 2. Selection of slices showing the associations between waist-to-hip-ratio (WHR) and voxels of the skeleton overlaid 

onto the mean FA image of the male participants. Convention is radiological (left is right). Results are shown of n = 302 

male participants.
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INTRODUCTION/MOTIVATION

In the last decade, functional resonance imaging at rest (rs-fMRI) has revealed that functional connectivity is dynamic, 

as the brain continuously alternates between alternative connectivity patterns, or ‘dynamical states’. However, 

mechanisms controlling dynamical patterns in spontaneous brain activity are poorly understood: whether specific 

regions play a leading role in orchestrating global changes in connectivity patterns is unclear. Most studies of dynamic 

connectivity have focused on cortical regions, following an underlying hypothesis is that shifts in brain states depend on highly 

interconnected cortical regions (hubs). Within the HBP Flag-Era ‘Brainsynch- Hit’ project, we leveraged a large 

neuroimaging database including healthy subjects and stroke patients (Washington stroke database) and focused our 

dynamic connectivity analysis on cortico-subcortical interactions [1]. To ensure the generality of our findings, we are currently 

replicating our dynamical state analysis using a large public rs-fMRI database from the Human Brain Project HBP() [4].

METHODS

Details about the Washington stroke database can be found in the original publications [2,3]. After standard 

preprocessing, the cortical, surface-projected time series were projected on the Gordon-Laumann atlas. As for subcortical 

regions, we compared a traditional parcellation (Harvard-Oxford atlas) with a recent multi-scale parcellation provided 

by [5]. Briefly, in our analysis we computed sliding-window functional connectivity matrices, approximated the matrices with 

their leading vector, and performed K-means clustering, identifying K=5 clusters
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or ‘dynamical states’ common to both patients and healthy controls. We replicated the same analysis using the

HCP database (the HCP website provides full details on the data).

RESULTS AND DISCUSSION

In the Washington data set, we observed that state switches are accompanied by sudden changes in cortico- subcortical 

coupling, We identified a set of dynamical connectivity states differing both in terms of segregation/integration 

between cortical networks, and icortico-subcortical connectivity patterns. Cortical regions flexibly synchronized with either 

limbic regions (hippocampus/amygdala), or subcortical nuclei (thalamus/basal ganglia). Focal lesions induced by stroke, 

especially those damaging white matter connections between basal ganglia/thalamus and cortex, provoked anomalies 

in the fraction times, dwell times, and transitions between states. Preliminary results on the HCP data set qualitatively 

reproduce the cortico-subcortical patterns identified in the previous study. Overall, our results show that brain activity at 

rest involves a dynamic relation between cortical regions and two main groups of subcortical regions. Overall, our findings 

hint at a key role of subcortical regions in global brain dynamics, and call for further investigation of cortico-subcortical 

interaction using data from different modalities as well as computational modelling.

Keywords: fMRI, Dynamic Functional Connectivity, Subcortical Regions, Stroke
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INTRODUCTION/MOTIVATION

The most characteristic anatomical property of brain networks is their organization across multiple spatial scales. A key 

challenge is to decipher the rules of connectivity that shape brain networks in order to understand how the brain works and 

how traumatic or neurological damage may affect brain functionality[1]. The general structure and function of the human 

brain, and its internal connectivity are all the result of its developmental history, which is at the same time the product of 

evolution[2].

Small-world, scale-free or heavy-tailed distribution network organizations have been identified at the structural- functional 

level in microcircuits, and in meso- and macro-scale networks[3].

Inspired by the Barabasi-Albert model [4] which showed that the principle “the rich gets richer” (a.k.a. “preferential 

attachment”) led to scale-free networks and hubs in real-world networks, in this work we test the hypothesis that the 

topology of brain networks could be shaped according to the rule that “the older gets richer”, i.e. the evolutionary 

older circuits or those generated earlier in embryogenesis are most central in the organization of the adult brain network[5].

METHODS

Methods are fully detailed in [6]. Briefly, we segmented human brain circuits according to their first (i.e. earliest) neurogenic 

Time (FirsT), i.e. the post-conception day on which the first neurons of the circuit are generated (Fig. 1A). We identified 18 

MACs for which a timing sequence based on their FirsT could be defined. Since MACs’
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volumes span across multiple scales, we studied the brain networks on two different spatial resolutions: a low- resolution 

network with the 18 MACs (nodes), and a high-resolution network where MACs were decomposed in a total of 2566 regions 

of interest (ROIs) of similar volumes which kept the same FirsT of the corresponding MAC. We used dMRI and resting-state 

fMRI images acquired at 7T from N=184 healthy subjects taken from the Human Connectome project [7] to reconstruct 

structural-functional brain networks (see Fig. 1B). Eigenvector centrality was calculated as hubness metric for each node 

(ROI or MAC; Fig. 1B) and correlated to nodes’ FirsT.

Brain maps of transcriptomics of 20787 genes in the adult healthy brain were reconstructed from the Allen Human Brain Atlas 

(AHBA) data [8] with a maximal possible resolution of 90 macro-regions each belonging to distinct MACs.

Brain maps of nodes’ centrality and FirsT were correlated to transcriptomics maps. Finally, enrichment analysis was 

performed both on physiological biological processes and cell component annotations, and in relation to the genes causally 

associated to epilepsy, Alzheimer’s Disease (AD), Parkinson’s disease (PD) and autism spectrum disorder (ASD) based on the 

Genome-Wide-Association-Study (GWAS Catalogue; https://www.ebi.ac.uk/gwas/). RESULTS AND DISCUSSION

At high resolution level, we observed that FirsT reversely shaped the nodes’ centrality in the structural and functional 

networks, where highly central nodes displayed respectively early and late FirsT (fig. 2 A1). Distinctly, the structural and 

functional nodes’ centrality of the low-resolution MACs similarly correlated with FirsT, with higher centrality displayed 

in the early born MACs (fig. 2 A1). In addition, we observed that FirsT-lags reversely correlated with wiring probability and 

connection weight, so ROIs and MACs connected more and stronger with those at similar age (fig. 2 A2). Finally, brain 

transcriptomic analysis revealed also high association between genes’ expression, FirsT and nodes’ centrality, in respect to 

physiological nervous system development and synapse regulation, and to neuropathological conditions. Notably, a 

significant rate of genes involved in major neurological diseases such as epilepsy, Parkinson’s, Alzheimers’ and autism 

spectrum disorder displays extreme correlation values (fig. 2 B) with nodes’ centrality (we especially mention high 

correlation for highly studied genes such as SCN1A, SNCA and APOE). The results provide a new multi-scale evidence on how 

neurogenesis time shapes structural and functional networks, brain nodes’ centrality and their transcriptomics in 

patho-physiological conditions and underlie two main neurogenesis preferential wiring principles: “the older gets 

richer” and “preferential age attachment”.

http://www.ebi.ac.uk/gwas/)


Figure 1. From the circuits’ embryogenic age to brain networks and transcriptomics. (A) Sagittal schemes of the early 

embryonic human brain with fundamental neuromeres (top) and location of the 18 MACs (bottom). (B) Neuroimage 

analysis pipeline. For each subject, high- and low-resolution structural and functional networks were reconstructed 

respectively using probabilistic tractography and correlation on resting-state activity. The correlation between the 

nodes’ metrics (eigenvector centrality) and embryonic age (FirsT expressed in post- conception days) was calculated. (C) 

Brain transcriptome data from AHBA dataset was used to search for genes with a high similarity between its spatial brain 

expression and brain maps of embryonic age and nodes centrality. Functional annotations of the obtained genes were 

further computed using overrepresentation analysis to find significantly associated biological processes and cellular 

components associated with maps of embryonic age and nodes’ centrality.



Figure 2. “older gets richer”, “age preferential attachment” and genetic causal link to major neuro-pathologies (Autism 

Spectrum Disorder, epilepsy, Parkinson’s and Alzheimer’s disease). A. Scatter plots of the nodes’ centrality (A1) and the links’ 

probability/weight (A2) relative to the FirsT, in the high (2566 ROIs) and low (18 MACs) resolution structural (red) and 

functional (blue) networks. The first and second columns from left represent the results for the 2,566 ROIs as violin plots, 

where the mean of each group (i.e. ROIs within a MAC) is plotted in black. All plots have a logarithmic scale in the y-axis. In 

(A2) the link weights (left y-axis) are plotted as a function of the differences of FirsT. Violin plots for the 2,566 ROIs show the 

link weight distributions while the solid lines plot the average values. Black solid lines show the exponential fit on the average 

values. The link probability is represented by the right y-axes and displayed as dots, and the broken black line showing the 

exponential fit. In (B) the same colour code is used for the four different diseases as shown in the inset legend of the top 

plot of panel (B2). For each gene the spatial expression in the brain was correlated to the spatial maps of eigenvector 

centrality and neurogenesis. In (B1) the probability distribution of the correlations (light gray histogram, left axis) 

between transcriptomics (20,787 genes) and neurogenesis (top plot), functional centrality (middle plot) and structural



centrality (bottom plot) is shown. The normalized relevance score of the GWAS genes listed for each disease (obtained 

from the GeneCards databases) has been plotted with dots (right axis). Vertical broken lines highlight the lowest and top five 

percentile interval. In (B2) the normalized count (percentage of gene per interval) of GWAS genes in five percentile intervals 

of the correlation distribution is plotted. IN panel (B3) the P-values of the normalized gene count in each percentile 

are shown. The threshold for p<0.01 calculated from the null model (based on a thousand reshuffled replications) which 

keeps into account spatial dependencies of both centrality maps and gene-expression is plotted as a broken horizontal black 

line. The arrows mark the extremities of the correlation distributions with a significantly higher number of GWAS-genes than 

what expected by chance.

Keywords: brain networks, hubness, neurogenesis, transcriptomics, older-gets-richer, age-preferential 

attachment, resting-state activity, tractography
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INTRODUCTION
The combination of imaging modalities able to explore the connectivity of the human brain at micro-, meso- 
and macroscopic spatial scales is an established requirement for advancing our comprehension of its 
structural organization [1]. Increased magnetic field strengths and improved contrast models in diffusion-
weighted magnetic resonance imaging (dMRI) have recently enabled the quantitative mapping of the human 
brain connectional anatomy with sub-millimetric resolution and refined angular accuracy [2]. However, state-
of-the-art dMRI may not accurately reproduce the brain tissue microstructure within voxels which encompass 
challenging fiber branchings or interdigitated architectures and, thus, still requires proper validation. The 
development of a gold standard for investigating the brain myeloarchitectonics with single fiber resolution 
over extended tissue volumes is of paramount importance with respect to the generation of reliable ground 
truth datasets of fiber tract orientations. Two-photon confocal scanning fluorescence microscopy (TPFM) and 
light-sheet fluorescence microscopy (LSFM) can be used to achieve superior spatial resolutions compared to 
state-of-the-art polarimetry-based modalities such as 3D polarized light imaging [3]. Nevertheless, unlike the 
latter, volume fluorescence microscopy requires fiber orientations to be estimated via image processing 
methods, such as Fourier or structure tensor analysis [4]. These, however, may lead to inaccurate orientation 
maps as they cannot isolate myelinated fibers from the surrounding tissue. Here we introduce a novel 
analysis pipeline built around a 3D Frangi filter [5] which enables a multiscale enhancement and 
segmentation of tubular structures of varying diameters in tiled brain volume images of arbitrary size, and 
the generation of accurate 3D fiber orientation maps from both grey and white matter regions. The 
developed software tool also features the estimation of orientation distribution functions (ODFs) which may 
support the histological validation of modern dMRI-based tractography.

METHODS
The image processing pipeline for the 3D analysis of myelinated fiber orientations was developed in Python 
and is available at https://github.com/lens-biophotonics/Foa3D. Its main stages are schematized in Fig. 1. In 
the present work, the pipeline was tested on a mesoscale TPFM reconstruction of a human brain region in 
between the primary and secondary visual cortex, treated for fluorescence microscopy according to the label-
free MAGIC preparation technique [6], which enhances the autofluorescence and, thus, the signal-to-
background ratio of myelinated nerve fibers. 3D image stacks were acquired at a resolution of 0.88 μm x 0.88 
μm x 1 μm by means of a custom-made TPFM system. The separate TPFM stacks composing the tiled 
reconstruction were aligned using ZetaStitcher, a software tool for large volumetric stitching [7], preliminarily 
compensating for their uneven spatial illumination via the retrospective CIDRE shading correction method [8], 
in order to suppress the grid-like stitching artifacts which would otherwise arise. Based on the available 
system resources, the fused image is then sliced into a batch of basic sub-volumes of adjusted size that are 
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processed in parallel over different CPU cores.

Figure 1 Block diagram schematizing the Foa3D image processing pipeline for the 3D analysis of myelinated fiber orientations in volume 

fluorescence microscopy; the pipeline is parallelized over basic sub-volumes of the reconstructed brain tissue sample; scale bar: 100 

μm (adapted from [9]).

RESULTS AND DISCUSSION

Fig. 2 shows the typical segmentation of myelinated fibers produced by the Frangi filter with the resulting 3D 
fiber orientation field, and the corresponding ODF map which is finally generated using the fast analytical 
approach recently proposed in [10], so as to provide a comprehensive statistical characterization of the fiber 
tissue microstructure within larger spatial compartments of adaptable size. Despite being tested on brain 
samples treated with MAGIC and imaged with TPFM, the developed pipeline can be generically applied to 
volume images acquired using LSFM or obtained by means of specific fluorescent myelin stains such as DiD 
(data not shown).

Keywords: human connectome, myeloarchitectonics, fluorescence microscopy, Frangi filter, orientation 
distribution functions

Figure 2 Frangi-based analysis of myelinated fiber orientations in a representative TPFM image stack (depth: 30 μm): a) average intensity 

projection of 3D fiber orientations (enhanced fiber diameters: 4 μm, 5 μm, 6 μm; resolution: 1 μm x 1 μm x 1 μm); b) fiber ODFs 

(resolution: 30 μm x 30 μm x 30 μm); scale bar: 50 μm.
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INTRODUCTION/MOTIVATION

Inhibition is one of the domains of the more general property of cognitive control that is the ability to adapt behavior to 

current demands by promoting relevant information regardless of interference with the internal urge 1. Action inhibition 

is the disengagement from a motor command, and it is a necessary component in the transition between different cognitive 

demands.

Modern artificial agents exhibit long-standing performance in terms of accuracy and reliability when learning a single task after 

exposure to stationary learning trials. However, in human-real case circumstances characterized by sources of uncertainty and 

variability such as unpredictable cues and unexpected constraints, they are not usually able to show reactive behavior to adapt 

to the environment 2.

Meta-learning (ML) systems can be used to integrate flexible and efficient learning in artificial agents. In ML the inner learning 

loop is continuously adjusted by an outer learning system made up of meta-parameters which reveal computational 

changes in the artificial agent-environment interaction 3.

METHODS

Our work 4 inherits the meta-learning principles in the neuromodulation theory proposed by Doya 5 and the neural 

architecture developed by Khamassi and colleagues 6 for agent-environment interaction. The neuromodulation theory 

propounds a direct equivalence between the dynamics of the four major neurotransmitters (e.g., acetylcholine, 

serotonin, dopamine, and noradrenaline) and the computational role of the hyperparameters which shape the meta-

learning processes (Fig.1). 

In this brain-inspired meta-learning framework for inhibition cognitive control we included meta-learner 

representations of the distributed learning systems in the human brain, e.g., cortical areas such as prefrontal cortex 

and subcortical regions such as basal ganglia.  We formalized brain-inspired meta-learning hyperparameters 

optimization rules, mimicking explicitly the dynamics and mutual interaction of the major neurotransmitters in the 

brain: (i) dopamine receptors D1 modulate the noradrenergic system (i.e. exploration/exploitation rate) with an inverse 

linear function that relates dopamine to the entropy of the probability distribution of the actions 7, (ii) dopamine 

receptors D2 tune the striatum neuron’s excitability 8, and (iii) serotonin regulates the overall dopamine release and 
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the reward temporal scale 9,10.

The artificial agent was tested in two different conflictual tasks that involve different types of action inhibition 11,12: 

action restrain in NoGo Paradigm and action cancellation in Stop-Signal Paradigm. In the former, we evaluated the 

ability to withdraw a not-yet-initiated action from responding by the appearance of a hold signal before the movement 

execution. In the latter, we investigated the ability to cancel an initiated response triggering an unpredictable hold 

signal after a range of delays from the action onset. 

In a subsequential work, we evaluated the role of the ratio between D1-mesocorticolimbical and D2- nigrostriatal 

pathways in inhibition cognitive control investigating the computational role of the dopamine meta-parameter, both 

in terms of concentration and efficacy.

We used the Wilson-Cowan formalism to implement the closed-loop serotonin-dopamine mutual interaction and the 

effect of an external background activity on the serotonin-dopamine system. 

We included monotonic logarithmic coupling functions that mediate the concentration of the two neurotransmitters 

according to the ongoing demand of the learning in the artificial agent.

RESULTS AND DISCUSSION

The artificial agent, after the training session, learned how to adjust successfully its hyperparameters (e.g., driving the 

system towards exploitation regimes) in response to the appearance of the hold signal in both paradigms, and hence, 

showing a proper encoding of the action inhibition command (Fig.2). In particular, both right inhibition and global 

accuracy increased significantly during the test phase in NoGo Paradigm (Mean ± SD; training: 53.32 ± 15.51% 88 vs 

test: 85.22 ± 4.42%; dc = 2.060 ; Mean ± SD; training: 0% vs test: 70.67 ± 9.20%; dc = 7.675 ) and in Stop-Signal Paradigm 

(accuracy, Mean ± SD; training: 45.53 ± 15.54% vs  test: 73.29 ± 4.76; dc = 1.952 ; right inhibition, Mean ± SD; training: 

0% vs test: 47.83 ± 10.46%; dc = 4.555 ). 

By considering the Stop-Signal Paradigm, high serotonin concentration acting on the dopamine release led to 

behavioral effects as such it shifted of the agent’s behavior towards non-impulsive regimes, e.g., shorter reaction time 

and higher right inhibition as well as a reduction in the Stop Signal Reaction Time (SSRT), i.e., the latency of the 

inhibition process.

Finally, we found that changes in D1-mesocorticolimbical and D2-nigrostriatal concentration as well as efficacy () 

produced differential and asymmetrical effects in the network’s activity as well as in the behavioral performance. 

In the closed loop scenario, we obtained an increase of Inhibition performances in terms of right inhibition (Mean ± SD; 

test open-loop: 47.59 ±10.31 % vs test closed-loop: 78.96% ±8.95 %; dc = 2.442 ) and accuracy (Mean ± SD; test open-

loop: 73.23  ±4.65 % vs test closed-loop: 89.46 ±4.42 ; dc =2.781) compared to the previous open-loop implementation, 

there is no difference in the stop-signal reaction time (Mean ± SD; test open-loop: 12.16  ± 1.10 % vs test closed-loop: 

12.07 ± 1.04 % ; dc =0.065). 

We demonstrated that brain-inspired meta-learning rules may pave the way of the design of cognitive control 

architectures for artificial agents that achieve more flexible and accurate behavior when conflictual inhibitory signals 



are present in the non-deterministic environment.

Keywords: Meta-learning, Brain-inspired Modeling, Inhibition Cognitive Control, Basal Ganglia, Prefrontal Cortex
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Figure 1. The model architecture inspired by 6,13 and the meta-learning mechanism based on principles of Doya’s 
neuromodulation theory 5,14,15 are illustrated. The cubes represent the neuron’s activity topographically associated 
with the two directions (Left (blue), Right (orange)) and action inhibition (Inhibition (Green)). Excitatory (black arrow) 
and inhibitory (black circle arrow) neural synapses, reinforcement learning, meta-learning mechanisms (e.g., action 
values 𝑄(𝑡) , dopamine [D1],  [D2], serotonin [𝛾], noradrenaline 𝛽, etc.) (black dashed arrows), and input/output 
connections (red line) are displayed. Stimuli are fed in the model by simulating a square wave (𝐴 (amplitude) = 1 [a.u.], 𝑇
 (duration) = 100 [samples], 𝐼𝑆𝐼 (inter-stimuli interval) = 200 [samples]) for neurons codifying Left or Right movement. 



Figure 2. Performance of the simulated agent in NoGo and Stop-Signal Paradigms. Results are averaged across 40 
simulations of 1000 stimuli during the training and test phases in NoGo Paradigm and Stop-Signal Paradigm. 
Results are expressed as Mean  SD. Cohen’s effect sizes are reported for large effects 𝑑𝑐. (a) Reaction time (RT), Right 
Inhibition and Accuracy are displayed for both training and test phases in NoGo Paradigm. (b) Stop Signal Reaction time 



(SSRT), Right Inhibition and Accuracy are displayed for both training and test phases in Stop-Signal Paradigm. SSRT is not 
defined during the training phase as the right inhibition is 0%. The color of the bar indicates the type of trials used to 
compute the metrics: Go trials (black), Hold failure trials (dark gray), Hold correct trials (light gray) and all trials (white). 
𝑑𝑐 is positive/negative if the right/left group mean is higher.  (c) 3D representation of the relationship among task 
parameters (Right Inhibition, RT(Hold,failure) and RT(Hold,correct) ), delay of the hold signal 𝑑 ∈ {10,20,30}), and 
serotonin concentration [γ ] ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.(d) Network parameters and inhibition performance metrics (RTs 
(Go and Hold failure and Hold correct Trials), Right Inhibition, Accuracy, SSRT) are plotted against the serotonin 
concentration [𝛾] ∈ {0.1, 0.3, 0.5, 0.7, 0.9} averaging across all the stimuli presentation during the Hold Trials during 
Stop-Signal Paradigm in the test phases at low 𝜂𝐷1, 𝑙𝑜𝑤(violet), 𝜂𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (black) and high 𝜂𝐷2, ℎ𝑖𝑔ℎ (sea green) efficacy of 
the ratio between [𝐷1]- D1-mesocorticolimbical and D2-nigrostriata pathways in favor of D2 pathways. 𝑑𝑐 is positive if 
the  𝜂𝐷1, 𝑙𝑜𝑤/𝜂𝐷2, ℎ𝑖𝑔ℎ efficacy group mean is lower respect to the standard condition.(e) Comparison between open-
loop condition (white) at fixed serotonin level of  [𝛾] = 0.5 and closed-loop (hitch pattern filled) condition in the Stop-
Signal Paradigm (𝑑 ∈ {10,20,30}).
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INTRODUCTION/MOTIVATION

Understanding and artificially synthesising how animals control their bodies and adapt to the environment is one of the most 

important scientific and technological challenges in both neuroscience and robotics. We know that behaviour is produced 

through sparse and irregular spiking patterns, which provide both robust and efficient control that requires little energy. 

Current neural network control approaches, however, are far from energy and data efficiency and even the ones that use 

spikes for computations have ineficient, dense and regular spike trains. Moreover, these approaches still need complex 

training and optimization procedures, complicating their implementation in on-chip low-power solutions.

Here, we describe, supported by the theory of Spike Coding Networks (SCNs) [1] a novel solution for optimal estimation 

and control, a spike control approach that behaves as a linear-quadratic-Gaussian controller [2], which

i) can be practically deployed on neuromorphic hardware and ii) has the advantage of having irregular, sparse, and robust 

spiking activity and does not need training.

We evaluated our robust estimation and control algorithm on two classical systems—the spring-mass-damper system and 

the cartpole (Fig. 1), in the face of several perturbations, including input- and system-noise, system disturbances, and neural 

silencing.

Figure 1. Spike coding control. Under the neuroscience theory of Spike Coding Networks (SCNs) we propose an estimation 
and control approach that can be easily deployed in neuromorphic hardware without the need for training when the 
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dynamical system is known. We evaluated the proposed approach in simulation using numerical simulations and Intel’s 
Lava simulator.

METHODS

Spike Coding Network control (SCN control)

We hypothesise that these spiking patterns encode a meaningful signature related to prediction error 

minimization [1,2] that can be analytically computed. Given a system with state x(t) with a spiking signal s(t) emitted 

from a recurrent SNN, where the SNN has access to a measurement of the input y(t), a desired state z(t) and is to generate 

a control signal u(t), we provide a closed-form solution for estimating and controlling any (linearized) dynamical system 

using SNNs with recurrent connections while maintaining sparse, irregular and robust spiking activity — We refer to [3] 

for a detailed explanation of the method.

Neuromorphic deployment

We implement our SNN in the Lava framework and simulator which allows the use of the Loihi 2 chip as a hardware backend. 

This involves optimizing the algorithm so that message passing between neurons occurs only upon spiking and creating 

standardized functions that build a network for control of any given linear system.

We simulate it as a Process and implement a Python Process Model to simulate the Loihi behaviour on CPU.

RESULTS AND DISCUSSION

We tested the model on numerical simulations and using the Intel’s Lava neuromorphic framework (Fig. 2C). The comparison 

of our controller against the well-known idealized LQR controller shows equivalent performance with the advantage of using 

spikes instead of traditional Von-Neumann architecture. As our approach does not need learning or optimization, it may 

provide fast and efficient task-specific on-chip spiking controllers with biologically realistic activity. Our next step is to connect 

the Loihi 2 to a mechanical cartpole system (Fig. 2A) to evaluate the system in a non-simulated environment.



Figure 2. SCN control evaluation. (A) Cartpole definition for the numerical simulations. (B) Estimation and control of the 
cartpole compared to the LQR baseline (Reproduced from [3]). (C) Spring-Mass-Damper control following a reference 

trajectory using SCN control on the Intel’s Lava simulator.
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INTRODUCTION/MOTIVATION

The appearance of an object in the visual field triggers a rapid gaze shift toward its location. This orienting response 

consists of a rapid rotation of the eyes, the saccade, which can be accompanied by a rotation of the head. If the target 

moves, the saccade is followed by a slow movement of the eyes and a catch-up saccade.

METHODS

Instead of describing the path leading from the target-evoked retinal activity to the changes in muscle tension, 

we shall take the reverse path. Starting from the muscle contractions, we proceeded upstream and described the 

tremendous organization that, in the brainstem and cerebellum, enables us to rapidly and accurately orient the foveae 

towards visual targets located at different eccentricities and depths. Thus, we discovered the considerable knowledge that 

neurophysiologists and neuroanatomists gathered during the last six decades with non-human species (mostly monkey and 

cat). Technical developments indeed offered the possibility to measure precisely the time course of eye and head movements 

and to study correlations between the firing rate of neurons and kinematic parameters (amplitude, velocity, acceleration and 

various differences called errors).

RESULTS AND DISCUSSION

These statistical correlation studies should not lead us to believe that a one-to-one correspondence exists between 

on the one hand, the multiple neuronal networks within which activities propagate, and on the other hand, the 

homogeneous mathematical medium with which we quantify the movements. Such a mapping is questionable insofar 

as contrary to the physical space, the medium of neuronal activity is neither homogeneous nor passive. Unlike most objects 

that we visually fixate and manipulate, the corresponding brain activity is not rigid. Even the mere spot of activity evoked 

by a small static object on the retina yields multiple parallel flows of activity that make its correspondence in the brain 

spatially distributed, temporally extended and context- dependent. Moreover, reducing the neurons or neuronal 

chains to units encoding geometric or kinematic relations between gaze target directions conceals not only the 

muscle forces and the antagonisms between muscles but also the antagonisms between the multiple channels that drive 

each movement.

In the majority of models proposed during the last decades, the movements were considered as driven by error 

signals encoding displacement vectors in physical space. These models were definitely useful to communicate 
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concepts and to bring a comprehensive picture of the complexity underlying the generation of movements. However, 

embedding geometric and kinematic notions within the inner functioning of the brain (i.e., mapping intrinsic neuronal 

signals with extrinsic behavioral measurements) may be neurophysiologically misleading because different constraints 

characterize the neurophysiological and kinematic descriptions. Rather than outcomes of processes reducing geometric 

or kinematic errors, the eye movements merely consist of transitions between equilibria opposing populations of 

neurons whose activity leads to mutually antagonist movement tendencies.

Further empirical investigation is still required to determine and explain several other issues: i.e., whether and how 

the networks underlying orienting movements of the eyes and head interact with those generating other types of goal-

directed action such as reaching movements of the hand or locomotion; whether and how they interact with the 

networks involved in the navigation and the memory of locations; and whether and how they support the learning of 

new skills and possibly the acquisition of more abstract knowledge such as geometry or counting. With the recent 

multiplication of cognitive studies that use eye-tracking techniques to explore the so- called “inner space” with 

quantitative methods, more effort is required to characterize what exactly are those covert processes that eye 

movements would express.

Keywords: Neurophysiology, Neuroanatomy, Non-human primate, Brain stem, Cerebellum, Superior Colliculus, Reticular 

Formation, Visual orienting
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INTRODUCTION/MOTIVATION

Brain responsiveness and complexity are linked to the level of consciousness (Tononi et al., 2004). The combination 

of Transcranial Magnetic Stimulation (TMS) and hd-EEG recordings represents the gold standard method to study how the 

brain states affect response complexity in humans. In this framework, a preclinical analogous using lab animals would 

provide novel mechanistic insights into the state-dependent responsiveness of the brain.

The use of light to monitor and control neuronal activity presents numerous advantages. Compared to standard 

electrophysiological techniques, imaging and optogenetics are less invasive, offer higher spatial resolution and allow to 

target genetically selected neuronal populations. A promising approach to record and simultaneously stimulate neuronal 

activity in mice is using all-optical neurophysiological methods. These methods allow causal investigation of neuronal 

connectivity with milliseconds temporal resolution across multiple spatial scales. A powerful technique to study 

mesoscale connectivity in mice exploits wide-field microscopy coupled with functional fluorescence indicators 

(Montagni et al., 2018). This approach provides simultaneous information of neuronal ensemble activity from distributed 

cortical areas. At the same time, transcranial optogenetic stimulation has been demonstrated to be a powerful tool to 

activate neuronal clusters in the cortex (Hira et al., 2009).

However, all-optical systems that combine these techniques critically suffer for crosstalk between imaging and 

photostimulation, limiting the possibility to develop wide-field all-optical systems (Lim et al. 2012; Akerboom et al. 2013; 

Emiliani et al. 2015).
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METHODS

All experiments were performed in accordance with the guidelines of the Italian Minister of Health (aut. n. 

857/2021). 5 C57BL/6J adult mice (3-6 months) of both sexes were used.

Wide-field microscopy setup. Wide-field imaging and optogenetic stimulation were performed using a custom- made 

microscope with two excitation sources. The excitation source for jRCaMP1b was a red-light beam of emitting diodes 

(595 nm LED) selected by a bandpass filter (578/21 nm). The light beam was deflected by a dichroic mirror (606nm) to the 2X 

objective towards the skull. The excitation source for single-photon stimulation of ChR2 was a continuous wavelength (CW) 

laser (λ = 473 nm). The excitation beam was overlaid on the imaging pathway using a second dichroic beam splitter (FF484-

Fdi01-25) before the objective. The system has a random-access scanning head with two orthogonally-mounted 

acousto-optical deflectors (DTSXY400). The jRCaMP1b fluorescence signal emitted was collected through a band-

pass filter (630/69) and focused on a high speed complementary metal-oxide semiconductor (CMOS) camera.

RESULTS AND DISCUSSION

Here we established a crosstalk-free large-scale all-optical method combining wide-field fluorescence imaging of the red-

shifted calcium indicator jRCaMP1b and transcranial optogenetic stimulation of Channelrhodopsin-2 (ChR2)(Resta et 

al., 2022) (fig. 1).

Fig.1 electrophysiological experiment showing that Wide-field imaging of RCaMP did not induce ChR2 cross-activation

To achieve a cortex-wide expression of the calcium indicator and the optogenetic actuator, we took advantage of adeno-

associated virus (AAV.PHP.eb) carrying jRCaMP1b under the control of the neuronal promoter synapsin and ChR2 under the 

CamKIIa promoter, thus targeting only excitatory neurons. This approach gives us the possibility to visualize the stimulated 

neuronal activity propagation in all the dorsal cortical areas.



Results show that in awake mice, optogenetic stimulations evoke a distributed cortical response in several areas in the two 

hemispheres (fig. 2), whereas, during anesthesia, stimulation led to a localized response limited in space and time.

Fig. 2 All-optical causal interrogation of the dorsal cortical mantle in awake mice. Image sequence representing the cortical activation 

following a single pulse stimulation fo the associative area, Posterio Parietal Cortex (PPC).

These results confirm that the spatiotemporal complexity of the evoked response decreases with the levels of 

consciousness, as observed in pathological patients affected by disorders of consciousness (Massimini et al., 2009).

Keywords: large-scale, imaging, optogenetics, brain states, brain responsiveness
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INTRODUCTION/MOTIVATION

Learning-to-learn is a process by which individuals accelerate their learning of novel tasks as a result of prior experience 

with similar tasks1,2. Within reinforcement learning, this ability is known as meta-reinforcement learning3. However, 

most models that carry out memory-based meta-reinforcement learning, including variants of long-short term memory, 

are unlikely to be implemented by the brain since they rely on training procedures that require non-local information, 

i.e. not available at synapses undergoing plasticity4. Moreover, these architectures can be unnecessarily complex5,6 

and therefore not easily interpretable5 or mappable to the brain. AuGMEnT7 is a biologically plausible model of working 

memory that only performs local computations but lacks gating mechanisms required for integration and selective forgetting 

of information over longer timescales, which hinders learning-to-learn. In this work we develop a biologically plausible 

gated recurrent architecture called RECOLLECT, which learns to memorize and forget based on locally available information 

and can learn-to-learn.

METHODS

RECOLLECT stands for “REinforCement learning of wOrking memory with bioLogically pLausible recurrent uniTs”. It is based on 

a simplified version of the gated-recurrent unit (GRU) called Light-GRU5 and the biologically plausible learning rule AuGMEnT7. 

The architecture consists of three layers: an input layer, a memory layer with candidate input, gating and memory units, 

and an output layer that maps memories onto Q-values. Memory units in RECOLLECT learn to represent task-relevant 

information as persistent activity. These memories are altered or erased at the appropriate time points, for example when a 

new trial has started. As in Light-GRU5, memory units have one gate, which both manages the degree to which previous 

memory is retained and how much new information from candidate input units enter the memory. Once the memory 

has been updated, memory units
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project towards output units that compute the Q-values of actions. Finally, actions are determined by a 

mechanism biased towards the action with the highest Q-value.

While recurrent neural networks tend to be trained with backpropagation-through-time, which utilises non-local gradients, 

RECOLLECT employs the AuGMEnT learning rule7. Synapses that contributed to the winning action of the network are tagged 

by means of an attentional feedback signal. Only tagged synapses are plastic and sensitive to a reward prediction error 

(difference between successive Q-values), delivered in the form of a global neuromodulatory signal. The gradients 

that are required to update the synapses are stored in synaptic traces. Therefore, each unit has access to all gradient 

information that is required to update its weights locally, enabling

the network to learn in a biologically plausible manner.

RESULTS AND DISCUSSION

RECOLLECT was able to successfully store task-relevant input into its memory and to sustain these memory 

representations over increasingly long delays on the saccade/anti-saccade task8. Moreover, it learned to flush its memory 

upon the end of trials to prevent interference with subsequent trials. Aside from its working memory capacity, 

RECOLLECT also acquired high performance on a two-armed reversal bandit task: a probabilistic choice task where reward 

probabilities associated with actions were periodically reversed9. It learned to initially perform explorative actions to assess 

which choices yielded the highest rewards, then to consistently choose the most promising action until the next reversal, 

and to forget previous reward mappings upon reversals. Since it could even perform this task without updating its weights, 

this demonstrates meta-learning. In conclusion, RECOLLECT is a biologically plausible gated recurrent network model that 

despite reduced computational complexity is capable of selectively retaining information, as well as learning-to-learn.

ACKNOWLEDGEMENTS

This research has received funding from the European Union’s Horizon 2020 Framework Programme for Research

and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3, Task 3.7).

We acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European Union’s Horizon 

2020 research and innovation programme through the ICEI project under the grant agreement No. 800858.



Figure 1. RECOLLECT architecture. Candidate cell units (Cj) and gates (kj) integrate input and synapse onto memory cells 
(Mj). Memory cells in turn project to output units (qk), after which a winner-takes-all mechanism determines the winning 
unit (qs). Connections contributing to the winning action are made plastic by means of synaptic tags. Synaptic traces store 
the gradients for candidate cell states and gates, thereby making local updates feasible.

Keywords: Recurrent neural network, learning-to-learn, meta-reinforcement learning, gating, working memory, neuroscience, 

reinforcement learning, computational modelling
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Introduction

Motor inhibitory control is one of the executive functions controlled by areas of the frontal lobe in primates. 
Being able to cancel a movement when required is essential for any action in a dynamic environment. This and 
other forms of contextual decision-making are dependent on the information provided by the contexts. One 
experimental task designed to investigate these functions is the stop signal task (SST) [1]. In this standardised 
paradigm the subjects are required to respond to a Go signal as fast as possible, and to inhibit if an unexpected 
presentation of a Stop signal during the reaction time (RT) occurs. However, how context dependent 
information influences the neural dynamics underlying the level motor preparation is still unknown.

Methods

We recorded neuronal activity from the dorsal premotor cortex (PMd) of monkeys while they performed a 
modified version of the SST, as detailed in [2]. The task consisted of two trial types namely Go and Stop trials, 
and three different conditions depending on the reward values associated with the correct response to each 
trial: Go+, Stop+ and Neutral. While the Neutral condition offered an equal amount of reward for correct Go 
and Stop trials, the Go+ and Stop+ conditions offered an uneven reward. Compared to the Neutral condition, 
the reward in the Go+ was higher on successful Go trials and lower on successful Stop trials; in the Stop+, 
reward was the reversed, higher on successful Stop trials and lower on successful Go trials. We characterised 
the fractal topology of the PMd functional network built from the linear synchronization (Pearson’s 
correlation, C) between well isolated single unit activity (SUA) in two specific task epochs (before and after 
the Go signal) and two specific task conditions. This approach provided an NxN (N = number of neurons) 
correlation matrix, the generic entry of which is the Cij between the i-th and j-th SUA time series in the chosen 
time window. We then interpreted the correlation matrix as the adjacency matrix of an undirected weighted 
graph, in which the nodes are the neurons and the weighted edges are the pairwise Cij. To quantify the 
topology of the network and to characterize its fractal properties across the different reward contexts of the 
task we employed the node-based multifractal analysis framework (NMFA) on the thresholded matrices 
according to percolation analysis [3;4]. NMFA, recently proposed by Xiao and colleagues [5], is a robust 
mathematical framework that provides a formal way to quantify the fractal properties of a network, thereby 
capturing the multi-scale details of its topology. It discloses the high-order connectivity patterns encrypted in 
the network structure and links them with its underlying intrinsic functionalities across task conditions. The 
main output of the NMFA is a curve, called the multifractal spectrum, f(α). The parameter α accounts for the 
level of complexity intrinsic to the network and therefore, f(α) describes how such complexity is distributed 
within the network. The degree of intrinsic complexity can be then easily expressed by a single number, α0, 
that is defined as the abscissa corresponding to the maximum of f(α) [6].

Results and Discussion

Figure 1 shows the normalised population SUA of correct Go trials across task conditions and epochs 
obtained from 68 neurons of one example recording sessions.The mean SUA is influenced by the reward 
context as signified by the different RTs of Go+ and Stop+ conditions. Figure 2A and 2B show f(α) and the 
degree of complexity α0 compared across task conditions between epochs. Results show that the 
neuronal dynamics in the PMd network exhibits a more
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complex fractal structure during Stop+ compared to Go+ condition (One-way Anova: p<.04). We attribute 
the increased complexity of the Stop+ condition to the different reward contexts provided by the Cue.

Keywords: decision-making, reward, single neurons, functional connectivity, graph theory, network analysis

REFERENCES
[1] Logan, G. D., and Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of 
control. Psychol Rev 91. doi: 10.1037/0033-295X.91.3.295
[2] Giamundo M, et al. "Neuronal activity in the premotor cortex of monkeys reflects both cue salience and 
motivation for action generation and inhibition." Journal of Neuroscience 41.36 (2021): 7591-7606.
[3] Bardella, G., Bifone, A., Gabrielli, A., Gozzi, A. & Squartini, T. Hierarchical organization of functional 
connectivity in the mouse brain: A complex network approach. Sci. Reports 6, 1–11,949 10.1038/srep32060 
(2016).
[4] Bardella, G., Pani, P., Brunamonti, E., Giarrocco, F. & Ferraina, S. The small scale functional topology 
of movement control: Hierarchical organization of local activity anticipates movement generation in the 
premotor cortex of primates. NeuroImage 207, 10.1016/j.neuroimage.2019.116354909 (2020).
[5] Xiao, X., Chen, H. & Bogdan, P. Deciphering the generating rules and functionalities of complex 
networks. Sci. Reports 2021 11:1 11, 1–15, 10.1038/s41598-021-02203-4 (2021).
[6] Response inhibition in Premotor cortex corresponds to a complex reshuffle of the mesoscopic 
information network Bardella G., Giarrocco G, Giuffrida V., Brunamonti E., Pan P.i, Ferraina S. bioRxiv 
2021.03.15.435381; doi: https://doi.org/10.1101/2021.03.15.435381 (2023).



Figure 1: Normalised SUA (mean ± SEM) in the epochs [-500, -100] and [+100, +500] aligned to the Go signal 
for Go+ (green) and Stop+ (red) conditions. The Y-axis are z-scored units of SUA while the X-axis marks the 
time in ms. The vertical line labeled Cue shows the Cue onset and the line labeled Go Onset represents the 
Go Signal onset. The vertical lines marked Mov on G+ and Mov on S+ represent the average Movement onset 
in Go+ and Stop+ conditions respectively (Mean RT Go+
= 658 ms; Mean RT Stop+ = 785 ms).

Figure 2: NMFA results: Metrics obtained from the NMFA framework compared across behavioural conditions 
for the epochs marked in Figure 1. A) the multifractal spectrum f(α) compared over epochs for Go+ (green 
traces) and Stop+ (red traces). B) the degree of structural complexity α0 averaged over trials for Go+ and 
Stop+ conditions.
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INTRODUCTION/MOTIVATION

Despite their tiny brain, insects exhibit a rich behavioural repertoire in their daily life when foraging for food or searching 

for mates. Models of search processes are important not only to biology but also to applications in robotics. As an 

example, the characteristic “cast and surge” path of male moths tracking a pheromone source [1] led to an efficient search 

algorithm, named Infotaxis [2], which was successfully implemented in olfactory robots [3-4]. When external cues are 

available, Infotaxis exploits the scarcity of odour encounters to maximize information gain and thereby limit the 

search time. Yet, when no cue is present or before finding the first cue, random searches might be favoured for their lower 

computational cost. A special class of random walks, so-called Lévy flight, seems to be optimal for searching under restrictive 

conditions [5,6]. Lévy flights have been observed in many animals including humans but whether the trajectories of flying 

moths follow a Lévy distribution is largely unknown. This lack of knowledge is due in part to experimental difficulties in 

tracking moths of small size and high speed of motion. Here, we take advantage of a new technology, named lab-on-cables 

[7], to track free-flying moths and analyse their trajectories for correspondence with Lévy flights.

METHODS

To record free-flight trajectories we used a cable-driven robot, a.k.a. lab-on-cables [7]. Reminiscent of the SkyCam or 

SpiderCam [8] used to cover sports events, the lab rig supporting two cameras is mounted on cables and moves automatically 

with the insect (Fig. 1). The cables are actuated by motorized winches so as to keep the insect within the moving lab by 

minimizing the tracking error. The position of the moving lab is computed from the cable lengths. The position of the insect 

is computed by the embedded stereo-vision system and transmitted wireless to the control computer. To start an 

experiment, the insect is placed on a takeoff platform at the center of the moving lab. After takeoff, the robot tracks the 

insect within a workspace of 6 m long by 4 m wide and 3 m high and the insect trajectory is recorded. For analysis, the 

trajectories are described as a sequence of flight segments of relatively straight motion interspersed by abrupt turns. The 

turns are identified as changes in flight direction higher

than a given threshold ∆θ. The empirical distribution 𝑃(𝑙) of the lengths 𝑙 of the flight segments is plotted in
logarithmic scale for correspondence with the theoretical Lévy flight distribution 𝑃(𝑙) ∝ 𝑙−µ. The power-law 
exponent µ is estimated with a linear fit in logarithmic scale and mean±SD is obtained by averaging the results over 
different segmentation thresholds ∆θ.
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RESULTS AND DISCUSSION

We recorded the trajectories of n=32 Agrotis ipsilon moths of ~2cm long (Fig. 1 left). Moths flew at a relatively high speed 

(1-3 m/sec). Moth trajectories are well described by segments of straight flight punctuated by rapid reorientations (Fig. 2 

left). The length of flight segments 𝑙 in logarithmic scale spans over a limited range, i.e. 1-2 decades (Fig. 2 right). The 

distribution has a power law scaling 𝑃(𝑙) ∝ 𝑙−µ reminiscent of Lévy flight with 1 < µ ≤

3. By varying the segmentation threshold ∆𝜃, from 10° to 50°, we estimate the scaling exponent µ ≈ 2 (1.94 ± 0.2, 
mean±SD). The correspondence with Lévy strategies is striking given that a Lévy flight with µ = 2 is optimal

in the case of nondestructive targets [5] and performs better than Brownian strategies in the case of destructive moving 

targets [6]. When comparing our results with theoretical Lévy distribution however, we need to bear in mind that similarity 

in trajectories does not imply necessarily that the insect brain produces a Lévy search process.

Yet, it is worth noting that µ ≈ 2 Lévy walks can emerge from autonomous patterns of neural activity in brain-

blocked Drosophila larvae [9].
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Figure 1. Collecting free-flight trajectories with a lab-on-cables. (Left) cable-driven robot for tracking free-flying insects in 
a workspace of 6m x 4m x 3m. (Right) Moving lab (30cm x 30cm x 30cm): Effector of the robot supporting the cameras and 
moving with the insect.

Figure 2. Correspondence with µ ≈ 𝟐 Lévy Flights. (Left) Trajectories recorded with the lab-on-cables for n=32 moths. Raw 
trajectories are in black. Segmented trajectories are in red (∆𝜃 = 10°). (Right) The empirical distribution 𝑃(𝑙) of the 
lengths 𝑙 of the flight segments is in black. The linear fit with logarithmic scale is in red. The estimate of the exponent 
in 𝑃(𝑙) ∝ 𝑙−µ is µ = 1.94 ± 0.2 (mean±SD).
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INTRODUCTION AND MOTIVATION

Near 13 million people all over the world suffer a stroke every year, around 8 million of them survive1. Around 85%2 of 

them suffer some deficit in motor control due to the lesion. Neurorehabilitation aims to improve the recovery of 

severe paralysed patients using, for instance, Brain Machine Interfaces (BMI) controlling a neurprosthesis3 to 

associate volition and action and promote neuroplasticity4. ISMORE is an exoskeleton5 which implements a closed-loop 

process where the EEG-based BMI predicts movement intention and the exoskeleton mobilizes the paretic upper limb. 

Despite promising results, this type of rehabilitation still faces some challenges that include the variability in the brain 

activity of stroke survivors and the need to better study neuroplasticity mechanisms during the therapy. Indeed, therapy 

is pre-programed (not personalized) and sometimes slightly adapted iteratively depending on the evolution and response 

to treatment. The research question is whether the therapy can be fully personalized and optimized to each patient, with 

the available clinical history and before therapy starts.

This poster reports the progress in implementing a digital twin to personalize and optimize rehabilitation protocols and 

treatment prognosis. Figure 1 describes the architecture of the twin implementing a closed-loop rehabilitation system in 

which the biomechanical model and exoskeleton are linked to The Virtual Brain (TVB)6 in a bidirectional way within the Neuro-

Robotics Platform (NRP)7. The TVB supplies efferent information and provides movement directives to the biomechanical 

system, while the sensory information of the biomechanical system provides feedback to the brain.
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Figure 1: Overall scheme of the digital twin.

METHODS

The virtual twin uses patient neuroimage recordings: 1) MRI and DWI scans performed before the therapy starts to get 

information of the structural anatomy of the brain; and 2) fMRI, EEG and EMG data collected to get physiological 

information during motor tasks. Based on this patient anatomic and neurophysiological data, we used OpenSim to build 

an upper limb biomechanical model (affected by the spasticity of a stroke) coupled with a model of the ISMORE exoskeleton 

that mobilizes the affected arm.

In addition to this, the TVB was adapted to the patient stroke anatomy by using automated pre-processing tools8. We 

extracted a structural connectome out of the structural and diffusion images and the brain activity out of the fMRI images. 

The connection between the two HBP engines is done within the NRP. The afferent block models the sensory organs of the 

muscles and tendons. The efferent system detects movement intention out of the EEG to trigger pre-stablished motor 

commands executed by the exoskeleton.

RESULTS AND DISCUSSION

The current state of the digital twin development is the following. We have implemented a closed-loop simulator within the 

NRP that integrates in a coordinated way the TVB, the biomechanical model, and the afferent and efferent module. The 

TVB simulates BOLD and EEG activity taking in consideration the anatomical structure of the patient brain based on 

parameters optimized using Bayesian optimization9 to maximize the correlation with the empirical functional connectivity 

matrix10. Two motor primitives simulate rehabilitation exercises (open-close hand and coordinated reaching), while 

afferent information in the form of neural action potentials derived from the mechanical properties of muscle length and 

velocity and tendon tension.



This first digital twin of a neuro-rehabilitation therapy provides opportunities for further research. It highlights the need for 

a full integrated model that includes volition and interaction with the peripheral nervous as well as as mechanisms to 

understand, modulate and cope with neural plasticity. Also, it provides simulation tools that can be directly transferred to 

a real physical system for validation with stroke patients.

Keywords: Neurorehabilitation, closed-loop, exoskeleton, upper limb, stroke, brain simulation, motor tasks.
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INTRODUCTION/MOTIVATION

The showcases developed in the last phase of the HBP are meant to illustrate the full potential of technical and scientific 

features offered by EBRAINS. In order to support the usability of the showcases, as well as future EBRAINS workflows, we have 

developed a set of modular graphic components and software solutions [1] which can be easily deployed or replicated in 

the EBRAINS Collaboratory within the JupyterLab.

These graphical user interfaces (GUI) components are all based on and under open source licences, supporting open 

neuroscience and they enable features like:

• Easy setup of models and region specific or cohort simulations

• Selection of Data sources and their links to models.

• Querying data from Siibra and the Knowledge Graph.

• Deployment and monitoring jobs on HPC resources.

• Integration of a subset of the virtual brain [2] analysis and visualisation tools [3].

METHODS

The graphical components developed, called tvb-widgets, are designed to be integrated into cells of notebooks or are part of 

JupyterLab extensions for direct usage in the EBRAINS Collaboratory as independent panels (Fig 2) with an appealing look and 

feel (3D display and interaction: Fig 1, reactive UI, drag&drop events).

The solution is modular, easy to extend and applicable to multiple showcases within EBRAINS.

For the development of these modules, we choose a Data Centred Architecture, where data is annotated, and accessed 

independently by the satellite components which can read or modify it. We introduce a hierarchical representation with 

flexible types for data and its metadata [2]; the components access shared data structures and are relatively independent 

—they interact only through data exchange; we get automatic orchestration as a possibility.
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RESULTS AND DISCUSSION

The storyline of a showcase would start from the structural data of a patient (or cohort). HeadWidget, from the tvb-

widgets module, allows the user to scroll through a Drive or Bucket, load compatible DataTypes in a 3D display, overlap 

multiple such structures, show them with an opacity slider, and slightly manipulate them.

Fig.1: HeadWidget allows displaying overlapped multiple structural elements from a case, and to interact in 3D space.

tvb-ext-xircuits module would follow logically, and allow the user to build a showcase. Technically it is a JupyterLab 

extension[4] offering a graphical interface for creating, analysing and executing workflows inside the EBRAINS Lab. It allows 

users to utilise EBRAINS capabilities through a graphical programming paradigm.

The main feature of the module is the creation of workflows, by dragging components onto a canvas area and linking them 

together. Each component can be configured through direct input values or graphical widgets, and the users choose between 

executing the workflow locally or remotely on an HPC node. For each HPC execution, a job is created and submitted and it 

can be monitored using tvb-ext-unicore.



Fig.2: tvb-ext-xircuits offers an easy graphical interaction with operations and data flows directly in EBRAINS lab

tvb-ext-unicore is an EBRAINS lab extension developed to add a GUI to the py-unicore API. This extension uses reactive 

graphical elements for auto-refreshing status of tasks, granting the user possibility to cancel a running job and most 

importantly downloading results fast from the HPC to EBRAINS lab or a local user environment.

tvb-ext-bucket is another novel EBRAINS lab extension providing a file browser for the Data-Proxy straight into jupyter lab 

while bringing the power of drag & drop to manage files from and into local storage, EBRAINS Drive or Data-Proxy. This 

software completes the flow cycle, by allowing users to easily push or pull results into and from archiving for other 

operations.

With the development of these tools we provide users with new means to approach the EBRAINS infrastructure, make better 

and easier use of HPC and the showcases. We address some critical interfaces in EBRAINS such as integration of data into 

simulations, deployment of computing tasks to HPC, as well as visualisation and analysis of input/output data.

Keywords: widgets, showcases, JupyterLab, GUI, Datatype, virtual brain, HPC, open source
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INTRODUCTION

3D Polarized Light Imaging (3D-PLI) enables the reconstruction of the brain’s fiber architecture at micrometer resolution1–

4. By measuring the transmitted light intensity of polarized light through unstained histological sections, the in-plane 

orientation (Direction) of both myelinated and unmyelinated fibers and their respective birefringent strength 

(Retardation) can be obtained. Recently, we have built 3D-PLI microscopes that provide additional measurements from 

oblique views. This makes the determination of the fibers’ out-of-plane orientation (Inclination) possible due to 

the varying Direction and Retardation because of the change in perspective. Therefore, every scanned voxel can be 

attributed to a 3D fiber orientation vector.

In recent years, the analysis of 3D-PLI data obtained under oblique views has been enabled by applying Least- Squares 

Analysis5 and refined by the introduction of a Bayesian approach with prior Markov-Chain Monte-Carlo (MCMC) Sampling6,7 

to obtain point estimates of orientation as well as credible intervals of 3D fiber orientation angles. While these algorithms 

were validated on a limited number of brain sections, their application to a series of 3,000 sections (covering an entire human 

brain) needs a well-defined automated high-performance computing (HPC)-based workflow. Here, we present a working 

implementation of such a workflow.
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METHODS

A deep-frozen brain is cut into 50 µm thin sections using a cryostat-microtome. During sectioning, Blockface images are 

acquired and serve as a volume reconstruction target. The unstained brain sections undergo 3D-PLI scanning1,2 (Figure 1, Step 

1) under one flat and four oblique views. The resulting five image stacks are calibrated to address inhomogeneities in the 

illumination of the sample (Figure 1, Steps 2 and 3).

Next, Fourier analysis is applied to obtain the sample's Transmittance, Direction, and Retardation maps1,2. The resulting 

Transmittance of the flat measurement can be used as the moving image in the registration process to the undistorted space 

of the Blockface images (Figure 1, Step 4). In a pre-masking step, laboratory labels and sealing marks are eliminated 

(Figure 1, Step 5). This is a prerequisite for the Gray Matter-White Matter (GM- WM) segmentation8 (Figure 1, Step 6) 

and the denoising step (Figure 1, Step 8) because both algorithms are based on the statistics of the image pixels7,9. 

Furthermore, the different perspectives of the oblique views must be accounted for to allow voxel-wise analysis (Figure 

1, Step 7).

The directional analysis consists of a point estimate of each orientation for each measurement voxel, following the 

estimation of Credible Intervals (Figure 1, Step 9). While the Least Square Fitting can be performed on unmasked 

measurement stacks, the Bayesian approach is only performed on a representative subset of the image7. In the final 

step, the point estimates of the 3D fiber orientations are combined and visualized in the fiber orientation map (Figure 1, 

Step 10).

The automatic registration of the histological measurement to the Blockface image and the WM-GM 

segmentation enables easy reconstruction of the 3D volume inside the undistorted laboratory space (Figure 2, upper row) 

and enables the reconstruction of the obtained voxel-wise fiber orientations (Figure 2, lower row) with respect to this 

reference. It creates an interface for further integration and comparison of microscopical and MR data.

RESULTS AND DISCUSSION

The presented workflow enables efficient usage of Jülich’s JURECA supercomputer and storage facilities as provided by 

FENIX10. In its current state, it utilizes CPU and GPU resources. Consequently, the automated processing of 3D-PLI 

images without manual intervention has been achieved and is now applicable to large-scale datasets.



FIGURE 1

Figure 1: Workflow diagram of the Analysis Workflow of 3D-PLI Data with oblique views: The yellow steps require both the flat views and 

the oblique views, while the grey ones utilize the flat views only.



FIGURE 2

Figure 2: Segmentation and Alignment of 3D-PLI Data: The Transmittance image is registered to the Blockface image for spatial reference. 

Additionally, Premasking and WM-GM-Segmentation allow further anatomical comparisons. The Directional Analysis resulting in the Fiber 

Orientation Map (FOM) can be warped to the Blockface space by applying the transformation yielding from the first row.

Keywords: Polarized Light Imaging, Workflow, Histological Sections, HPC, Directional Analysis
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Introduction

The proteomes of the presynaptic and postsynaptic compartments mediate information 
processing in the brain via complex and highly dynamic molecular networks. We curated 58 
proteomic studies from 2000 to 2021, to produce a comprehensive dataset describing >8000 
proteins expressed at the mammalian synapse[1].

Each synaptic component was annotated with relevant metadata based on the respective 
study (author, year, method, subcellular compartment and brain region) and associated 
with function and disease information according to Gene Ontology and Human Disease 
Ontology. Furthermore, the protein–protein interactions (PPI) were obtained based on 
combined human, mouse and rat data from publicly available databases. The resulting 
database/network model is available in a SQLite implementation (SynaptomeDB) from 
Edinburgh
DataShare https://doi.org/10.7488/ds/3771 and EBRAINS.

To make the database widely accessible we developed synaptome.db package, which allows 
building customised synaptic PPI networks based on metadata [2]. To support and facilitate 
further analysis of obtained PPI networks with respect to disease-related molecular 
complexes we developed the package BioNAR. Both packages are available from 
Bioconductor release 3.16: 
https://bioconductor.org/packages/release/bioc/html/BioNAR.html and 
https://bioconductor.org/packages/release/data/annotation/html/synaptome.db.html.

https://doi.org/10.7488/ds/3771
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Results

Synaptome db. enables direct access to the data from within the R environment, providing a 
simple API for extracting the data from the database. Main functionalities include:

• Information about specific genes, including the most frequent user 
queries: When? and by whom? was my favourite gene (or list of genes) 
identified? Was my gene/list found pre- or post-synaptically? and how 
often? Was it found in a specific brain region? and which diseases it is 
associated with?

• Prioritisation. Synaptome.db allows extracting the “most likely synaptic” 
subset of proteins in each dataset, enabling custom filters for the proteins 
that have been identified more frequently than others, thus, may 
correspond to higher confidence synaptic networks.

• Building customised PPIs. The package supports the extraction of PPIs for the 
gene list (list of EntrezIDs or gene names) or entire compartment/brain region 
and their export in a form of a network graph or a table.

To enable rapid and systematic analysis of biologic networks we designed BioNAR. The 
package integrates and complements existing R packages and fills the methodological gaps 
necessary to interrogate biomedical networks with respect to functional and disease 
domains. As a result, we provide a detailed topologically based network analysis pipeline, 
enabling the researcher to load networks generated and/or annotated using their lab’s own 
meta-data, thus making the tool as widely applicable and flexible as possible. Package allows 
to predict a protein’s impact within multiple complexes, and enables the co-occurrence of 
meta-data, i.e., diseases and functions, to be estimated across the network and which can 
identify clusters whose components are likely to share common function and mechanisms.

Figure 1 illustrates the main functionalities of BioNAR.
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Discussion

We developed synaptome.db package to provide a simple and intuitive access to the 
SynaptomeDB and allow quick and convenient retrieval of information for specific gene(s) 
and building the PPIs for synaptic subset on fly. We developed BioNAR package to get 
useful insight from the PPI network based on topology and metadata, providing new 
insights into the molecular basis of synaptic transmission and the molecular basis of 
neurological diseases.
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INTRODUCTION/MOTIVATION

Parkinson's disease (PD) is a degenerative brain condition in which the patient develops uncontrollable, 
involuntary movements. The best available treatment to date is deep brain stimulation (DBS) of subcortical 
nuclei. DBS, if successful can have life-changing improvements in PD symptoms, however, the postsurgical results 
can vary by a large margin. The main goal of this study is to build personalized PD patient connectomes to be 
used for simulating brain activity in The Virtual Brain (TVB) platform. The long-term aim is to build a model to 
predict the outcomes of DBS treatment in PD patients.

METHODS

Ten patients with PD were operated on with subthalamic nucleus (STN) DBS implantation. T1 and diffusion-
weighted magnetic resonance images (MRI) were collected before the surgery and a postoperative 
computerized tomography (CT) scan was performed. Tissue segmentation and
reconstruction of cortical surfaces were performed using Freesurfer’s recon-all pipeline for processing the 
structural T1 MRI scan. Diffusion-weighted images were artifact-corrected, constrained spherical deconvolution 
and tractography was performed using the MRtrix3 toolbox. The structural parcellation of the T1 MRI scan was 
projected onto the diffusion-weighted images. The Desikan and DISTAL atlases were used to obtain a structural 
connectome. The precise location of the DBS electrode was identified from the postsurgical CT and projected 
onto the T1 image.

RESULTS AND DISCUSSION

The PD patient T1 MRI neuroimaging data was used to build an individualized virtual brain model. The brain 
connectome including subcortical areas of interest for PD – STN, globus pallidus internal, and globus pallidus 
external, was computed. The resulting virtual brain model was enhanced with the
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projection of the DBS electrode, to determine the location and volume of tissue affected by electric stimulation.

The resulting model will be used to model PD patient brain under DBS in the TVB platform. The simulation of the 
neuronal activity will be achieved by equipping a dynamic neural mass model to every node of the connectome. 
The virtualized DBS electrodes will be used to model the dynamics of perturbations resulting from the 
stimulation. Individualized patient virtual brain modelling will improve our understanding of the varying results 
in the DBS treatment of PD.

Keywords: Parkinson’s disease, connectome, deep brain stimulation, The Virtual Brain

ACKNOWLEDGEMENTS

Funded by the EU Horizon 2020 Framework Program Human Brain Project (EBRAINS Voucher Call 2020 project 
Prediction of neurosurgical treatment outcomes in Parkinson‘s disease).



151. Normalizing the brain connectome for 
communication through synchronization

Spase Petkoski*, and Viktor Jirsa

Affiliations: 1Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, UMR 1006, Marseille, France

*e-mail-address of corresponding author(s) spase.petkoski@univ-amu.fr

INTRODUCTION/MOTIVATION

Networks in neuroscience determine how brain function unfolds, and their perturbations lead to psychiatric disorders 

and brain disease. Brain networks are characterized by the connectomes, which comprise the totality of all connections, and 

are commonly described by graph theory. This approach is deeply rooted in a particle view of information processing, based 

on the quantification of informational bits such as firing rates. Oscillations and brain rhythms demand, however, a wave 

perspective of information processing based on synchronization.

METHODS

Networks of oscillators, are often used to study dynamical systems for which the local activity is multidimensional and 

nonlinear [1]. They have been conceptualized to be responsible for the communication in the brain through coherence [2] 

and synchronization [3], Fig. 1 (A), but this aspect is still unlinked on the network level to the features of the structural links, 

i.e. weights and time delays, that shape the synchronization of the brain network [4].

When the time delays are comparable to the timescale of the intrinsic oscillations, they need to be included in the analysis 

of network dynamics. To go beyond the static representation of networks, we use the insight that the impact of the direct 

link in the phase difference between oscillators can be separated from the rest of the network. We extend traditional graph 

theory to a dual, particle-wave, perspective, integrate time delays due to finite transmission speeds, and derive a 

normalization of the connectome, Fig. 1.

RESULTS AND DISCUSSION

Normalized wave coupling 𝑤(𝑓) = 𝑤 cos Ω 𝜏 scales the static weight 𝑤 between the regions i and j at

𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗

frequency Ω, by including the impact of the time delay 𝜏𝑖𝑗. When applied to the data base of the Human

Connectome project, we explain the emergence of frequency-specific network cores including the visual and default 

mode networks [5], Fig. 2. These findings are robust across human subjects (N=100) [6] and are a fundamental 

network property within the wave picture.

The normalized connectome comprises the particle view in the limit of infinite transmission speeds and opens the 

applicability of graph theory to a wide range of novel network phenomena, including physiological and 

pathological brain rhythms. These two perspectives are orthogonal, but not incommensurable, when understood within the 

novel here proposed generalized framework of structural connectivity.
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Figure 1. Spatio-temporal network organization and wave coupling weights for synchronized networks. (A)

Particle (static or frequency-independent) and wave (synchronization-dependent) interactions with delay 𝜏, due to 
distance l, and propagation velocity v. (top) Transmission of packets over non-oscillatory local dynamics;

(middle) a particle type of transmission that does not depend on the coherence (e.g. during strong perturbation) and is thus 

independent of the underlying oscillatory dynamics; (bottom) the communication is dependent on the synchronization. 

(B) In-and anti-phase synchronization for fixed frequency and different time-delays for 2 oscillators and the wave 

coupling weight. (C) Wave couplings for a human and connectome at different frequencies. (D) Wave couplings and 

spectral strength and capacity for a particle and for wave communication. Links contributing positively (negatively) to the 

synchronization are yellow (green). Lines have width proportional to the absolute wave coupling strength (shown next to 

the links) and the size of the circles corresponds to the nodes spectral capacity (dark) and strength (colored), both shown 

for each node.



Figure 2. Mean spectral cortical activity of 100 healthy subjects. Mean spectral strength is shown across regions and frequencies, 

and the proportion of the activation (power) of Visual and Default Mode Networks (DMN) is projected in each of the 

bands.
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Introduction. A standard approach in brain networks analysis involves the characterisation of 
brain regions and inter-areal interactions that participate in cognitive processes [1]. Here, we 
present a novel statistical framework and Python toolbox for both the analysis of local task-related 
activations and functional connectivity (FC) in task-related conditions [2, 3]. 

Methods and Results. The Python toolbox called Frites (Framework for Information Theoretical 
analysis of Electrophysiological data and Statistics) allows the inference of task-related inter-areal 
interactions from multi-channel and multimodal neurophysiological signals (M/EEG, intracranial 
EEG) using information theoretical methods and group-level statistical approaches. Frites is 
equipped with a set of information theoretic tools for the analysis of interactions between brain 
signals and their relation with experimental task-related variables. By default, Frites is using the 
Gaussian Copula Mutual-Information [4] to study the relation between either local brain activity 
and inter-areal FC with experimental variables (i.e., cognitive tasks). For what concerns FC 
measures, the toolbox allows the estimate of dynamic (i.e., time-resolve), undirected (e.g., mutual 
information) and directed (e.g., Granger causality) FC on a single-trial basis [5, 6]. For statistical 
inferences, the package integrates a non-parametric permutation-based statistical framework to 
perform group-level inferences on non-negative measures of information. The toolbox includes 
different methods that cope with multiple-comparison correction problems, such as test- and 
cluster-wise p-value corrections. The implemented framework also supports both fixed- and 
random-effect models to adapt to inter-individuals and inter-sessions variability. Frites provides a 
set of workflows that integrate several analysis steps. Those workflows take as inputs the neural 
data coming from single or multi-participants (or single / multi sessions), estimate the amount of 
information shared between the brain data and the external variable, at each brain region and 
time bins, and finally perform network-level statistical inference, corrected for multiple 
comparisons. Frites is currently present in the EBRAINS Knowledge Graph and installed in the 
EBRAINS cloud environment.

Discussion. Frites is a Python software combining information-theoretical approaches with flexible 
group-level analyses for the investigation of cognitive brain networks. It is now accessible from 
EBRAINS services and it will be further integrated with future EBRAINS modelling and data analysis 



services.

Figure 1. Overall structure of Frites. Frites proposes a single group-level statistical inference and neuroinformatics 
framework for the analysis of local task-related activations and functional connectivity (FC) measures starting from 
neurophysiological data (LFP, iEEG, MEG, EEG).

Keywords. Functional connectivity, MEG, EEG, iEEG, LFP, cognition, brain networks, group-level 
statistics.
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Introduction. Our vision is that whole-brain models will lead to ground-breaking applications when they will 
be able to formalise how perception and action emerge from dynamic interactions between specialised 
brain regions and circuits. Within WP1 of HBP (SGA3), Task T1.12 aims at providing the theoretical 
foundations and neuroinformatics tools to: i) infer behaviorally-relevant brain responses, inter-areal 
interactions and information routing patterns and ii) validate brain models of task-related local activations 
and network interactions that account for such empirical evidence.

Methods and Results. Here we present an overview of most recent achievements of Task T1.12 linking 
model-free and model-based approaches for the analysis and modelling of brain network dynamics and 
interactions. Our approach was tested on data from the Human Intracranial Database (HID), a collection of 
stereotactic electroencephalography (sEEG) data in epileptic patients, performing eight behavioural tasks 
[1]. The first study proposes a combined brain-behaviour mediation analysis with statistical models of 
evoked brain responses to identify which features of brain activity mediate the processing of sensory 
information and behavioural responses. The shade mediation analysis pipeline was tested on intracranial 
EEG high-gamma activity (HGA) recorded from epileptic patients, while performing a visual search task and 
preliminary results are shown at a HBP poster [2]. The second study [3, 4] presents a novel statistical 
framework and Python toolbox for the analysis of functional connectivity (FC) in task-related conditions. 
The Python toolbox called Frites (Framework for Information Theoretical analysis of Electrophysiological 
data and Statistics) allows the inference of task-related inter-areal interactions from multi-channel and 
multimodal neurophysiological signals (M/EEG, intracranial EEG) using information theoretical methods and 
group-level statistical approaches. Using these tools, we computed group-level FC from iEEG during a visual 
search task and performed statistical analyses to infer which interareal interactions differentiate between 
two task conditions that differ in difficulty. The third study introduces a new FC measure, called Feature-
specific Information Transfer (FIT), which quantifies how much of the directed information transmitted 
between neural signals is about specific external target variables, such as a feature of a sensory stimulus S. 
The FIT measure can be combined with network-level statistical analyses to infer task-related information 
routing patterns. Results are presented at the poster session of the HBP Summit [5]. The fourth study 
presents whole-brain model inversion based on FC matrices computed from iEEG data during task-related 



conditions [6]. Notably, a whole-brain Hopf model was built using empirical anatomical DTI and iEEG data 
parcellated according to the MarsAtlas parcellation scheme. The simulated data was calculated using 
Gaussian-Copula mutual information between each pair of brain areas, and fitting was improved by 
optimising the effective connectivity (EC). We successfully simulated the empirical sEEG data for different 
reaction times (fast, middle, and slow) and two difficulty levels of the visual task (easy and hard). We found 
differences underlying EC, that is, different mechanisms underlying task difficulty levels. The last study was 
interested in inferring interareal axonal propagation delays and excitatory and inhibitory synaptic time 
constants at the whole cortical level using neural mass models whose parameters were inverted from iEEG 
responses to direct cortical stimulations (F-TRACT database) [7]. These new neurophysiological brain maps 
have been added to the knowledge graph of EBRAINS for re-use in whole brain models, e.g. for 
informational graph theory analyses [8].

Discussion. Overall, we presented an integrated set of workflows for the analysis and modelling of task-
related brain networks. The workflows include both data-driven and model-based methods for inference 
and validation of task-related brain network models. Several components are already present into EBRAINS 
and future work will focus on the correct integration within the EBRAINS infrastructures. In particular, 
future integration initiatives will aim at bridging the gap between additional modelling and validation 
initiatives within EBRAINS, and potentially integration with the cloud and HPC services of EBRAINS thanks to 
the collaboration with the team of Petra Ritter. 



Figure 1. Workflows for inference of network-level properties and validation of whole-brain models.
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INTRODUCTION

2-photon calcium recordings are 

becoming massive and powerful 

methods are needed to extract 

the neurons and their responses 

from the data. We created the 

Spectral Segmentation toolbox, to:

1) segment regions of interest 

(ROIs) representing neuronal 

structures,

2) inspect data and edit ROIs,

3) extract data with neuropil 

subtraction, and

4) match ROIs in sequential 

recordings.

Figure 1. summary of the analysis pipeline.
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METHODS

The ROI identification is based on two steps. First, cross-spectral power between each pixel and its eight neighbors 

is calculated to create images in which active neurons are clearly visible. The ROIs are then automatically created 

with constraints set by the user, like size and signal strength. After the automatic process ROIs can be edited or 

added with a user interface. This user interface also enables inspection of the raw data in many ways. The calcium 

signal traces from ROIs can be extracted and neuropil corrected. ROIs from different recordings can be matched 

together by registering the spectral images and calculating the ROI overlaps.

RESULTS & DISCUSSION

The software can reliably detect active neurons and dendrites and gives insight into the data. It enables chronic 

tracking of individual neurons in calcium imaging experiments over periods from days to multiple months. The 

software pipeline is available on GitHub at github.com/Leveltlab/SpectralSegmentation.

Key words: Calcium imaging, ROI segmentation, pre-processing
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INTRODUCTION

Our brains are extremely efficient in interpreting and responding to constant streams of highly complex 

sensory information. One increasingly influential concept of how the brain achieves this is predictive coding. It 

views the brain as a hypothesis-testing machine that compares an internal model of the environment with 

sensory inputs it receives. It tries to minimize the difference between the two by calculating errors in the 

prediction and using these to update the internal model. This requires neurons that encode the internal 

representation, and those that encode prediction errors. Identifying the cell types that encode prediction 

errors or internal representations has been extremely challenging, mainly because responses to visual inputs 

and predictions are strongly intertwined. Here, we used occlusion of natural visual scenes to separate visual and 

predictive responses across layer 2/3 (L23) and layer 5 (L5) in mouse primary visual cortex (V1) and study the 

effect of visual training on these responses.

METHODS

We recorded activity from L23 or L5 neurons in mouse V1 using chronic two-photon and widefield calcium 

imaging in awake mice (Fig 1A). We mapped population- and single cell receptive fields (RFs)
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and then presented six (partially) occluded and full natural scenes (Fig 1B). In order to study the effects of learning, 

we then trained mice to detect a subset of these natural scenes in full condition while leaving the others 

out. This resulted in familiarity with some, but not other images. We then again recorded single-cell 

responses to full and occluded scenes after training. Finally, we used a convolutional neural network (CNN) 

to model visual responses and maximally excited inputs (MEIs) to compare visual properties between populations 

of neurons. For all analyses we only included neurons that had their RFs in the occluded region of the images (Fig 

1B).

Figure 1. Experimental setup (A-B) and summary of main results (C).

RESULTS

In L23 we found neurons that either responded to the full images or to the occluded images, in line with the 

presence of positive and negative prediction neurons. Perceptual training induced strong plasticity of these 

responses, decreasing responses to full images but increasing those to familiar images. Responses to novel 

images (full or occluded) were strongly enhanced. In L5, neurons responding to the full images 

dominated and showed similar, but stronger plasticity than layer 23 neurons. Responses to occluded stimuli 

were weaker and did not change with experience. Finally, decoding image identity from occluded responses 

was possible both in L23 and L5, and slightly increased after training in L23.

CONCLUSION

Our results suggest that like human and monkey visual cortex (see poster 96), mouse V1 neurons can encode 

visual contextual information in the absence of FF input. These responses are experience- dependent and are 

in line with the presence of positive and negative prediction error neurons in L23 and possibly internal 

representation neurons in layer 5.
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INTRODUCTION/MOTIVATION

The brain activity measured by fMRI is linked to the output of the cognitive activity performed by the subjects under 

study. This type of activity is considered to be the top layer of processing and subsequently it is considered to make up the 

`brain states' which are thought to emerge from the interactions among brain areas1. Here, we spatiotemporally 

decompose synthetic and empirical fMRI BOLD recordings during rest into substates that are characterized in their own 

activity space and are further exposed on the manifold of the whole-brain activity.

METHODS

The temporal decomposition of the data is done with the aim of getting the dynamic functional connectivity (dFC) states2, 

which come with the use of sliding temporal windows. We identify co-fluctuation (CF) events which happen as traces 

of highly-correlated activity across the brain3 and we apply PCA, PHATE and T-PHATE to reconstruct the manifolds. The 

analysis goes from the “top” layer (`brain state' output) to the “networks” level, where more details of the dynamics are 

expected to be apparent. The spatial decomposition is done following a novel method which combines PHATE and Spectral 

Clustering to split the brain into networks of most synergetic regions that exhibit homogeneous profiles of activity (Figure 1). 

The first principal component (PC1) of each profile explains the vast variance of each profile and its scores reflect the essence 

of the activity. Combining these PC1s the manifolds of the dFC states are extracted.

In parallel, the phase portrait of each network can be viewed based on each PC1. Following the framework of Structured 

Flows on Manifolds (SFM)4 we are attempting to find the flow on the manifolds. Clearer manifestation of the flow should 

happen around the areas where the deterministic component of the underlying slow-timescale dynamics is stronger. These 

areas were considered to be around the CF events which take place away from the core of the manifold. There, the lines of 

the flow are expected to be less dense and the fast-time scale dynamics weaker.
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RESULTS & DISCUSSION

Resting-state from the synthetic and empirical data show similar topological organization with the CF events at the 

boundaries of the manifolds. Splitting the regions into non-overlapping sub-networks of similar activation profiles gives 

access to more localized dynamics and the manifolds of the separate dFC states. Phase portraits reveal the mechanisms of 

the flow, which can be characterized by single or multiple attractors. This is first demonstrated with the synthetic data, 

where the exploration of the manifold is driven by local bistabillity. In the second part, the same procedure for the areas 

around CF events leads to phase portraits that expose the structured flow that governs the slow-time scale dynamics of 

the resting state (Figure 2). Signatures of bistability can be explained by the activity of sensory areas which transitions from 

high (sensitivity to external stimuli) to low (mind-wandering). The characterization of the flow on the manifold of the 

resting state allows better understanding of different metrics that describe the brain at rest. Comparison with the 

synthetic data from the brain network model, offers better understanding of the generative mechanisms of macroscopic 

brain dynamics. Keywords: resting-state, manifolds, flow, dFC, co-fluctuation events
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Figure 1. A: Affinity matrix of regions calculated by PHATE when applied to cluster the regions based on the similarity of 

their dynamics. B: Spectral clustering of the affinity matrix splits the regions into networks which make up profiles of 

homogeneous and distinctive activity. C: The first principal components dominate the activity’s variance for obtained 

subnetworks, thus validating the clustering procedure.



Figure 2. Phase portraits reveal the flow of the slow-time scale dynamics of each profile, which is dominated by the 

mentioned networks. Color-coded is the time-evolution before and after the CF (purple to yellow).
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INTRODUCTION/MOTIVATION

Sodium (23Na) MRI provides relevant functional information on neuronal energetic status and cell viability1. In the context of 

focal epilepsy, sodium accumulation has been observed in cortical regions characterized by high epileptogenicity2, and 

inclusion of 23Na information appeared promising to improve Virtual Epileptic Patient (VEP) performance3. The involvement 

of the thalamus and its structural abnormalities in patients4–6, motivated us to investigate thalamic sodium accumulation 

and assess its specificity based on epilepsy type and/or thalamic segment. The perspective is to include this information 

the VEP framework.

METHODS

A total of 21 temporal lobe epilepsy (TLE, mean age ± SD: 33±11 yrs, 8 males), 16 non-TLE (NTLE, 34±13 yrs, 9 males) and 22 

healthy controls (H, 37±15 yrs, 10 males) were recruited. All patients underwent a comprehensive pre-surgical work-up 

including a SEEG recording for grouping in TLE and NTLE (prefrontal, insular-opercular, central-premotor or posterior) 

based on epileptogenic zone network topography7.

For each subject, 1H-MRI B1
+, T1 (0.6 mm3) and multi-echo 23Na (3 mm3) data were acquired using a whole-body 7T scanner 

(Siemens Healthineers, Erlangen, Germany) and 1H 1Tx/32Rx (Nova Medical, Wilmington, USA) and dual-tuned 23Na/1H QED 

birdcage coils, respectively2. The multi-echo 23Na images were fitted using a bi- exponential model and normalized 

relative to signals from reference tubes to compute whole-brain total sodium concentration (TSC) maps8. In parallel, post-

hoc B1
+ corrected T1 data were skull-stripped for automatic segmentation of the thalamus and its nuclei using the 

7TAMIBrain atlas6,9. Gray matter density-weighted TSC averages were calculated in 23Na image space for left and right 

thalami separately, and their posterior, lateral and medial segments (Fig. 1A). Average T1 and total volume were extracted in 

T1 space6.
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While TSC averages were only significantly modulated by estimated total intracranial volume (eTIV, calculated by FreeSurfer, 

Fig. 1B), estimates were corrected for age, sex, hemisphere and eTIV effects (to match T1 and volume correction) based on 

the controls data using the confounds Python package10. After z-scoring with respect to controls, group-wise, ipsi- 

vs.contralateral differences in thalamic (segments) and associations with clinical parameters were explored using 

ANOVA, (Bonferroni-corrected) pairwise comparisons and correlation analyses as implemented in the pingouin Python 

package.

RESULTS AND DISCUSSION

Thalamic TSC differed significantly between groups (p<.001) with increased TSC in both TLE (p<.01) and NTLE patients (p<.01), 

while unilateral increases appeared more pronounced in TLE patients (Fig. 1C). Increased TSC overlaps with decreased T1 and 

volume (Fig. 1D) in these patients both ipsi- and contralaterally. With respect to clinical characteristics (Fig.1E), TSC was higher 

in patients with a left seizure onset zone especially (p<.05), and earlier disease onset (r=-.26, p<.05).

Analyses per thalamic segment (Fig. 2A, based on

>29 voxels/subject) did not reveal clear spatial 

differences across the thalamus with similar group 

patterns as at the whole thalamus scale. 

Nonetheless, the medial segment appeared 

uniquely impacted in the NTLE patients while in TLE 

the strongest TSC increase was observed in the lateral 

segment (Fig. 2B).

The observed increase in thalamic TSC follows 

previously observed tissue degeneration (e.g.,



volume decrease)5 and microstructural changes (i.e., shortened T1)6 and indicate changes in neuronal integrity. This effect 

seems strongest in patients with left hemisphere seizure and earlier disease onset. Finally, our analyses provide first estimates 

of differential TSC increase across posterior, lateral and medial segments between patient groups. Together, these findings 

suggest that the extent of thalamic sodium accumulation might depend on clinical and/or SEEG characteristics and potentially 

provide additional priors to enhance VEP performance.

Keywords: Focal epilepsy, thalamus, sodium, ultra-high field MRI, Virtual Epileptic Patient
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Introduction

Understanding the effects of anaesthesia on cortical signal propagation could lead to a better 

understanding of different states and mechanisms of (un)consciousness. Previous studies using whole-

brain imaging techniques such as BOLD-fMRI, and EEG have demonstrated that the repertoire of cortical 

states drastically diminishes under anaesthesia1,2. Moreover, anaesthesia results in reduced large-scale 

complexity of cortical activity elicited by trans-cranial magnetic stimulation (tCMS) and deep brain 

stimulation (DBS), vis a vis wakefulness, using methods such as the Perturbation Complexity Index (PCI)3,4. 

However, studies that specifically target the fronto-parietal loop5,6, which is thought to be central to 

conscious access 7–9 and crucial for awareness, are rare.

Results and Discussion

Here we recorded from Utah arrays chronically implanted in the ventrolateral prefrontal (vlPFC) 

and posterior parietal (PPC) cortices, in three male macaque monkeys, respectively. Scalp potentials were 

also recorded simultaneously from eleven EEG channels. Furthermore, intracortical microstimulation was 

delivered to the centre of the 10x10 Utah Array at different amplitudes (ranging between 1µA to 100µA), 

during wakefulness, light and deep anaesthesia. At the mesoscale, we found that the microstimulation-
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induced evoked response (broadband local field potentials - 0.1-250Hz) during wakefulness was 

significantly stronger in amplitude, and lasted longer in time (following the end of the pulse-train), than 

during light anaesthesia. However, the evoked response during deep anaesthesia was stronger than 

during light anaesthesia, but weaker than during wakefulness. Coupled with the observation of burst 

suppression periods during deep anaesthesia, we attribute this paradoxical finding to increased cortical 

sensitivity during periods of cortical silence10. Next, we found that the amplitude of the evoked response 

was distance- dependent for different levels of consciousness. We quantified this modulation of signal 

propagation as the pre/post modulation of signal energy (l2 norm). We found that it was similar in 

proximal and distal populations under quiet wakefulness, while under anaesthesia, it dropped off sharply 

across distance, showing that anaesthesia restricts the mesoscale spread of the elicited cortical activity11.

At the macro-scale, the EEG-evoked response pattern was similar to intracranial recordings on 

electrodes closer to the stimulation site. However, these evoked responses displayed the opposite polarity 

on the contralateral electrodes, but only above a certain amplitude threshold. Furthermore, these 

responses were positively correlated with the stimulation intensity (non-linearly), while the depth of 

anaesthesia negatively impacted the amplitude of the evoked response.

Finally, to model the mesoscale results, we used a 2D array of mean-field models (of AdEx type) 

which can display asynchronous (awake-like) or synchronous slow-wave (anaesthesia-like) dynamics, and 

can reproduce the above-observed enhanced response to stimuli in the asynchronous state, compared to 

slow-wave states. This model was also tested on different types of slow-waves, to simulate the "depth" 

of anaesthesia. The model is compatible with TVB and runs on EBRAINS.

Taken together, our results suggest that signal propagation during anaesthesia is disrupted at 

multiple scales (meso and large-scale) following microstimulation of the prefrontal and parietal cortices. 

This effect may underlie a similar disruption in multiscale integrative processes that are potentially crucial 

for the mechanisms of sensory (un)awareness.

Keywords

Consciousness, anaesthesia, signal propagation, simultaneous recordings, intracortical microstimulation, 

Utah arrays, mesoscale, TVB, cortical states, mean-field models.
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Introduction
Experimental and clinical studies of consciousness identify brain states (i.e., transient, relevant features of the 
brain associated with the state of consciousness) in a non-systematic manner. Moreover, the identification 
of brain states is not consistently coupled to research into the induction of state changes, even though this 
coupling may provide outstanding opportunities for targeted induction of changes in the state of 
consciousness. This review aims to outline important and consistent findings related to identification and 
modulation of transitions across brain states in consciousness research. In turn, this is crucial for the diagnosis 
and treatment of patients with a disorder of consciousness (DoC).

Methods
We have coordinated our efforts towards a multiscale and multi-methodology in both the human and 
animal domain approach in order to systematically explore how to induce brain state transitions. The 
resulting outlook could eventually be used in the clinic with DoC patients. We first scrutinize the 
identification of brain states associated with consciousness and unconsciousness (e.g., DoC and anesthesia). 
Next, we show the effects of neuromodulation (i.e., pharmacology, photopharmacology, non-invasive 
brain stimulation like transcranial direct current stimulation (tDCS), and invasive brain stimulation like deep 
brain stimulation (DBS)) in relation to alterations of brain states and the potential induction of state 
changes in the spectrum of consciousness. Furthermore, this narrative review is supported by data by being 
part of the Live Paper innovation initiative within the Human Brain Project, meaning that it is possible to 
follow a link tointeract, through EBRAINS, with data and figures illustrating the concepts.

Results
We show that in DoC the frequencies in which the brain operates are slowed down and that the pattern of 
functional communication in the brain is sparser, less efficient and less complex1. The results also highlight 
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damaged resting state networks, in particular the default mode network, or decreased connectivity in long-
range connections or in the thalamocortical loop. These findings are similar to those found under anesthesia 
or in animal models, highlighting their importance to clinical advancement.
Moreover, we show that anesthesia and animal models offer excellent experimental control.

Therapeutic approaches to DoC, through pharmacology (e.g., amantadine, zolpidem2), non-invasive brain 
stimulation (e.g., tDCS3) or invasive brain stimulation (e.g., DBS4) have shown some effectiveness. It seems 
that the deteriorated features of the brain found in the first part may improve in response to these 
neuromodulatory approaches yet targeting often remains non-specific. On the other hand, 
neuromodulatory techniques like DBS and photopharmacology5 that allow for excellent spatial and 
temporal control, offer outstanding opportunities for the further investigation of neuromodulation and 
induction of brain states. Given the similarities of affected brain states across DoC, anesthesia and animal 
models the latter play a major role in the development of targeted treatments.

Discussion
The fields of brain state identification and neuromodulation of brain states with relation to consciousness 
are showing fascinating developments. This paves the way for increased coupling of both fields, where brain 
states could be identified in a more predictive setting, and this could be followed by theory and empirical 
testing of neuromodulatory techniques inducing changes. Moreover, there is compelling evidence for the 
benefits of the integration of computational modelling in such studies. This review further helps to identify 
where challenges and opportunities lay for the clinical translation of our findings. All in all, this review shows 
that the field of brain state research of states of consciousness, as well as its manipulation through 
neuromodulation, is maturing with clear opportunities for future research.

Keywords: Consciousness, brain states, neuromodulation, disorders of consciousness, anesthesia, animal 
models, humans, live paper
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INTRODUCTION/MOTIVATION

The complexity of the cellular makeup and function of the human brain is remarkable and distinct from non- human 

species[1]. As such, studies adopting human models are of great importance to move forward in the understanding of 

human cortical dynamics. So far, electrophysiology and histochemical experiments in human cortical slices have revealed 

important principles of network and cellular physiology of human cells (for a review regarding epileptic tissue, see [2]). 

However, previous studies often focused on the microscopic level, offering a scarce view of population and local network 

activity. To research on circuit dynamics, it is essential to resort to larger scale recordings, such as multielectrode array 

(MEA) recordings[3]. Here, our goal was to provide a two- dimensional characterization of human cortical dynamics in 

cortical slices during spontaneous cortical activity and following pharmacological and electrical modulation.

METHODS

Samples of human cortical tissue were obtained during surgery of epileptic (EP) or brain tumour patients (TP) and cut into 

400μm-thick coronal slices. We simultaneously recorded the extracellular local field potentials of multiple cortical 

columns and layers using MEA (40 slices from 12 samples) during spontaneous and evoked activity. Excitability levels 

were modulated using 0.5–8μM bicuculline methiodide (BMI), a GABAA receptor antagonist which blocks fast 

inhibition. We also applied exogenous Electric Fields (EFs,+/-1-5V/m), which shift the resting membrane potential (ca.0.5mV 

per 2V/m[4]). Following electrophysiological recording, cortical layers were histologically reconstructed. The alignment of 

recording sites with cytoarchitectonic areas allowed the
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spatiotemporal profiling of cortical spiking events, including the directionality of influence (Granger causality) between 

sites.

RESULTS AND DISCUSSION

Human slices expressed spontaneous slow oscillations (SO), which are characterized by periods of activity (Up- states) 

interspersed by periods of silence (Down-states), at a frequency <1Hz[5] (Fig 1). Activity from slices obtained from EP 

displayed shorter Up-states (<0.2s) with higher firing rates and longer Down-states, when compared to activity from 

the TP tissue. Histological investigation revealed that the cortical structure of our samples was preserved, not 

corresponding to dysplasia or tumoral tissue. As such, the differences observed between the cortex of EP and TP may reflect 

intrinsic functional changes and/or the impact of seizures.

Additionally, we found layer-specific dynamics consistent with findings from other mammals [6], with Up-states initiating 

preferentially in deep cortical layers. Measuring the Granger causal influence between layers, we also found a greater 

causality from deep (d) to superficial (s) layers (d to s=2.2x10-3, s to d=0.6x10-3), indicating the same preferred direction 

of the flow of information.

BMI application resulted in shorter Up-states, higher firing rates and more synchronized discharges. In fact, neurons in 

the peritumoral tissue following BMI application had similar firing rates to those in the epileptic one. Hence, GABAergic 

blockade increased network excitability and induced strong network synchronization. Network excitability was also 

modulated using EFs. Positive EFs resulted in an increase in SO frequency, while negative EFs led to decreased SO frequency, 

illustrating how human emergent cortical activity can be finely tuned exogenously (e.g., tDCS). A similar network 

response to the different levels of excitability has also been described in animal models[7]–[9], taking their translation to 

medical applications one step further.

The characterization of cortical dynamics at different levels of excitability broadens our understanding of human cortex 

network mechanisms and mesoscale organization. Comprehending the basic properties of the human cortex is a crucial 

first step towards the development of effective treatment strategies.

Fig 1. Human cerebral cortex in vitro Human slices recorded with a multielectrode array (A) covering multiple cortical layers and columns.

(B) Histological reconstruction allowed the alignment of recording sites with cytoarchitectonic areas. (C) Local field potential (LFP) and multiunit 

activity (MUA) of one cortical column expressing spontaneous slow wave activity.
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INTRODUCTION
Dopamine is a powerful neuromodulator that regulates a plethora of higher brain functions, including 
motor control, cognition and emotions, by modulating neuronal excitability and synaptic inputs of a wide 
range of neurons across the brain [1]. Specifically, dopamine exerts different effects via D1- and D2-type 
dopamine receptors, with distinct spatial distributions, and with different affinities which endow sensitivity 
to different timescales and input characteristics [2]. The basal ganglia is a network of subcortical nuclei that 
has a central role on dopamine synthesis and function and its emergent activity is integrated in the whole-
brain dynamics through the basal ganglia-thalamo-cortical circuit [3]. Particular dopamine signaling dysfunctions 
within this circuit are selectively implicated in several neuropsychiatric disorders such as Parkinson's 
disease [4]. The relationship between large-scale brain activity and behavior (or clinical symptoms) can inform on 
how distinct behaviors arises from the coordinated activity between neural populations. How dopaminergic 
neuromodulation regulates brain-wide activity remains largely unknown [5]. In the last recent years much 
effort has been put into developing data-driven, large-scale brain activity theoretical models such as The Virtual 
Brain (TVB) [6]. TVB allows for personalized patient's brain modeling and has been proven to be a valuable 
tool for translational brain research. However, until now, few have been the attempts to implement 
neuromodulation in TVB. Here we aim to provide TVB with dopaminergic modulation with a bottom-up 
strategy using knowledge on how dopamine receptors function at the microscale, single-cell level, to 
investigate the role of dopamine receptors activity in regulating large-scale neural dynamics and behavior 
in health and Parkinson’s disease.

METHODS
Precisely, we developed a new module in TVB, which includes a basal ganglia-thalamo-cortical circuit. Each 
node in the virtual basal ganglia-thalamo-cortical network represents a distinct cell population described by a 
local neural activity obtained with a mean-field model derived for an all-to-all coupled neural network of 
adaptive quadratic integrate-and-fire (aQIF) neurons [7]. Each neuron is modelled by a four-dimensional 
system consisting of one equation for membrane excitability, one equation for spike frequency adaptation plus 
two equations accounting for inhibitory and excitatory conductance-based synaptic inputs. To model D1- and 
D2-type dopamine receptors specific modulation of neural excitatory and inhibitory synaptic inputs we used a 
published, data-informed aQIF spiking neuron model, extended to account for dopaminergic modulation [8]. 
The corresponding mean-field model is based on the Lorentzian ansatz approach [9] recently adapted for 
the aQIF model [10].

RESULTS AND DISCUSSION
We showed that, for a single population node, the resulting mean-field description is capable of qualitatively 
and quantitatively describing the collective dynamics of the neural network, including transition between tonic 
firing and bursting. We are currently tuning the model parameters to assess how the emergent network 
dynamics of each of the coupled nodes in the virtual basal ganglia-thalamo-cortical circuit succeeds to recover 
the expected physiological dynamics in healthy and pathological dopamine signaling conditions. Altogether, we 
are presenting a new multiscale TVB approach that will allow for modeling: 1. Specific D1- and D2-type 
dopamine receptors modulation at a cellular microscale level and; 2. The corresponding derived macroscale 
realistic brain activity readouts. This new tool will help elucidate the mechanisms by which dopamine 
modulates large-scale brain activity in health and Parkinson’s disease and will set the path to provide with a 
suitable in silico model for pharmacological development and discovery for dopamine-related neurological and 
psychiatric diseases.
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Introduction

Environmental cues (like the logo of a diner) exert a powerful influence on our daily choices. 
Although intrinsically neutral, such cues acquire predictive and motivational value through 
their pairing with a rewarding outcome (e.g., food) and, thus, bias future choices by 
triggering reward-seeking behavior [1–3] However, the mechanism through which such 
reward-associated cues exert their influence on human choice is yet to be clarified.

We propose that intimate and bidirectional links between decision, behavior and the 
cortical motor system may be at the core of this phenomenon. More precisely, we 
hypothesize that the extent to which a reward-associated cue bias choice is associated 
with motor-related changes in brain rhythms in response to the presentation of such cues.

Methods

42 participants completed a Pavlovian-to-Instrumental Transfer (PIT) task [4–6] while 
the electroencephalographic ( EEG) signal was acquired.

The PIT task was structured in three phases: (1) Instrumental conditioning phase, in 
which the participant learned two response-outcome associations (R1�O1 and R2�O2); 
(2) Pavlovian Conditioning phase, in which the participant learned the association  
between  four  reward-associated  conditioned  stimuli  (CS)  and  their
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respective outcome (CS1�O1, CS2�O2, CS3�O3, CS-�no outcome); (3) Transfer phase, in 
which the influence of the conditioned stimulus (CS) on the instrumental response was 
tested (e.g. CS1: R1 or R2?) under extinction (i.e., no reward is delivered). Crucially, while 
CS1 and CS2 predicted an outcome previously earned by a specific instrumental action (CS+ 
action), CS+3 predicted rewarding an outcome that was never associated with an 
instrumental action (CS+ no-action). The CS- served as an unrewarded control condition.

Changes in premotor activity were measured by means of oscillatory activity recorded 
from electrodes over the premotor cortex, contralateral to the hand used to perform the 
action (i.e., FC3 electrode for right hand and FC4 electrode for left hand).

Results

Behavioral results confirmed a robust PIT effect across subjects. Analysis of the oscillatory 
activity revealed decreased beta power and increased theta power in the premotor areas 
contralateral (but not ipsilateral) to the hand performing the action, selectively associated 
with the CS+ action condition, as compared to the CS+ no-action and CS- conditions. This 
activation was observed during the deliberation period, before action execution.

Discussion

These results show the early involvement of premotor activity in cue-guided decision- 
making, thus supporting the idea - in line with the work on motor cognition and embodied 
decision-making [7,8] - that the motor system is not downstream to the decision process, 
but actively contributes to the influence that reward-associated cues can exert on choice 
processes.
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Introduction

Environmental stimuli influence our daily decisions, even when they are irrelevant to our current 
goals. This influence can be adaptive when such cues facilitate the rapid detection of environmental 
opportunities1. However, it can sometimes be maladaptive when the elicited course of action is 
either no longer appropriate, or difficult to control. This can be observed in compulsive behaviors 
2,3. Crucially, the neural mechanisms through which some cues bias the decision process remain 
debated 4,5. In the current functional magnetic resonance imaging (fMRI) study, we hypothesize 
that the motor system plays a key role in cue-triggered decision-making.

Methods

Thirty-eight right-handed participants (after preprocessing N=31, age=20.36±2.36SD, female=15) 
performed a variant of the Pavlovian-to-Instrumental Transfer task (PIT) in the MRI scanner. The 
day before the experimental session, rewards were individually tailored for each participant so 
that the selected rewards had equal liking and wanting scoring (scale 1-9). A functional 
localization task in which subjects saw either a circle, square, or cross on the screen asking them 
to prepare a right-hand, left-hand, or no response, was performed to locate the motor 
preparation network. During two Pavlovian learning phases, occurring before and after an 
Instrumental learning phase, participants were asked to passively observe some color cues (CS1, 
CS2, CS3, CS-) coupled with food rewards (O1, O2, O3, O-). During instrumental learning, some of 
the rewards (O1 and O2) also became associated with a manual response (R1, R2): Participants 
press the left or right key on each trial to obtain a reward (R1->O1, R2->O2). In the transfer phase, 
the slot machine will light up a color cue and participants could freely produce as many responses 
as they wanted (both left- and right-hand) (see Fig. 1)



Figure. 1. Experimental timeline and task illustration.

Results

At the behavior level, CS1 and CS2, which were coupled with a reward that was previously 
associated with a manual response elicited the production of more corresponding actions during 
the transfer phase (i.e., CS1->R1, CS2->R2), indicating an action-specific PIT effect (Fig.2A, 
t(30)=4.563, Cohen’s d=0.820, p<0.001). Moreover, we found a higher number of responses when 
CS3 was presented, relative to CS− (Fig.2B, t(30)=2.266, Cohen’s d=0.407, p=0.031), indicating a 
reward-related general PIT effect. At the neural level (Fig.2C), during the second Pavlovian phase, 
we found that color cues that were indirectly associated with a response (CS1 and CS2) led to the 
significant activation of the Superior parietal and Postcentral cortex, a key region for motor 
intention and action control 6,7, as compared to CS3. This effect was absent in the first Pavlovian 
phase. Further functional localization-based ROIs analysis (Fig.2D) showed the action-related CS+ 
activate the Left pre-supplementary motor area (preSMA) only in the second Pavlovian phase 
(CS1>CS3: t(30)=1.964, Cohen’s d=0.353, p=0.021).

Figure. 2. Behavioral results of transfer phase A) Specific PIT effect and B) General PIT effect; C) Whole 
brain analysis results of the first and second Pavlovian phases (voxel-wise threshold of p<0.001, family-



wise error corrected at the cluster level. D) Functional localization-based region of interest analysis results.
*<0.05, ***<0.001

Discussion

Our current results suggest that the underlying neural substrates of motor processes might be 
pivotal in cue-triggered decision-making, enriching the understanding of the neural processes that 
could mediate the transition from adaptive to maladaptive cue-triggered decisions.

Keywords ： Pavlovian-to-Instrumental Transfer (PIT) task; Cue-trigger decision making; Functional 
magnetic resonance imaging (fMRI); Motor system
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INTRODUCTION/MOTIVATION

Whenever facing dislocated options to choose, we tend to sequentially direct our gaze to each of them, until we commit to a 

decision1,2. Studies about the behavioral role of gaze allocation suggest longer inspections for the most valuable options3-6, but 

the effects of allocating gaze on neural activity during decision-making is unknown. We aimed at detecting value encoding in orbito-

frontal (OFC) cells, combined with task-relevant gaze patterns, to investigate the modulatory effects of gaze position on neural 

activity at multiple task conditions. We assessed that value encoding for sequentially presented offers mainly occurs during offer 

presentation and choice deliberation, for ipsi-lateral gaze allocation. By analyzing delay times following each offer presentation, 

we found that subjects preferentially looked at screen locations where best offer previously occurred, and exclusively re-activated 

the encoding of the best offer value for ipsi-lateral visual inspection.

METHODS

We simultaneously recorded eye and neural data during a risky reward gambling task (Fig.1A). The task is performed by two macaque 

monkeys and consists in the sequential presentation of two alternative offers on either screen side (offer1/offer2, 400ms), 

interleaved with blank screen delay times (delay1/delay2, 600ms). Choice is performed by holding fixation on the chosen offer for at 

least 200ms. The monkeys correctly performed the task by accurately detecting best offer (Fig.1B) and gazing to meaningful locations 

throughout task execution (Fig. 1C). We fit a logistic model of choice (Fig.1D) with regressors: expected value (EV) of left/right 

offers (EVL/EVR), their variance σL
2 or σR

2, and order of presentation (sLR=1 if trial starts with left offer, 0 otherwise). EV is the 

product of reward magnitude m and probability p; σ2 is computed as mp (1 – p). We included the fraction of time spent looking at 

the right screen side fR=tR/(tR+tL), with tR (tL) being the time on right (left) side. For the encoding of the EVs in OFC, we regressed the 

spike count η of each of n=248 cells in 10 ms bins with a linear rate model to EVL or EVR (Fig.2A,B). The empirical fraction of significant 

cells is compared to the distribution of n=1000 trial order shuffles and deemed significant if >95th percentile threshold. The 

analysis is repeated by combination with eye data, for which trials are classified as looking left (or right) based on average horizontal 

eye position being negative (or positive) (Fig.2C,D).
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RESULTS AND DISCUSSION

Subjects directed their gaze to offers during their presentation, and shifted if most recent offer was less valuable, so that more time 

was spent on most valuable offer. By factoring out value-related variables, we found that more time was devoted to the chosen 

offer, suggesting that gaze allocation plays a causal role in decision making, beyond value-based contingencies. Surprisingly, the same 

pattern occurs during delay times. Despite the screen was blank, subjects directed gaze where valuable offers were previously shown. 

We find that EV encoding mainly occurred during presentation, or at later times, before and during choice deliberation (Fig.2A,B). 

Investigating EV encoding in opposite inspection sides (look left, look right), we find that the respective offer is significantly encoded 

in OFC if and only if the subject directs gaze to ipsilateral screen side (Fig2.C,D), in line with overt visual search for sensory input 

integration1-3. Strikingly, we find that if subjects looked back at first offer location during the second delay, the encoding of the 

first offer EV significantly increased, possibly implying the reactivation of offer re-evaluation for that offer (Fig.2C,D). Combining 

our results, we provide evidence that eye position reflects and internal deliberation process possibly modulating the 

encoding of currently (re-)evaluated content, providing a new window to study the hidden dynamics of decision making.

Keywords: decision making, reward gambling, value encoding, orbitofrontal cortex, re-evaluation, visual inspection

REFERENCES

[1] Thomas, A.W., Molter, F. and Krajbich, I., 2021. Elife, 10, pp. e57012. doi: 
10.7554/eLife.57012

[2] Krajbich, I., Armel, C. and Rangel, A., 2010. Nat. Neuroscience, 13(10), pp.1292-1298, doi: 
10.1038/nn.2635;

[3] McGinty, V.B., Rangel, A. and Newsome, W.T., 2016. Neuron, 90(6), pp.1299-1311, doi: 
10.1016/j.neuron.2016.04.045;

[4] Padoa-Schioppa, C. and Assad, J.A., 2006. Nature, 441(7090), pp.223-226; doi: 
10.1038/nature04676;

[5] Strait, C.E., Blanchard, T.C. and Hayden, B.Y., 2014. Neuron, 82(6), pp.1357-1366; doi: 
10.1152/jn.00325.2015;

[6] Rich, E.L. and Wallis, J.D., 2016. Nat. Neuroscience, 19(7), pp.973-980. doi: 
10.1038/nn.4320;

https://doi.org/10.7554/eLife.57012
https://doi.org/10.7554/eLife.57012
https://doi.org/10.1038/nn.2635
https://doi.org/10.1038/nn.2635
https://doi.org/10.1016/j.neuron.2016.04.045
https://doi.org/10.1016/j.neuron.2016.04.045
https://doi.org/10.1038/nature04676
https://doi.org/10.1038/nature04676
https://doi.org/10.1152/jn.00325.2015
https://doi.org/10.1152/jn.00325.2015
https://doi.org/10.1038/nn.4320
https://doi.org/10.1038/nn.4320


Figures

Figure 1. Task, choice, and gaze position during execution. A. Timeline of the gambling task for a sample trial. Reward offers are 
sequentially presented at opposite screen sides for 400 ms (offer1/offer2), each followed by 600 ms delay time (delay1/delay2). 
Visual stimuli consist of vertical bars whose height cues to reward probability p, and color cues to reward size m = medium (blue), 
large (green) or small (safe, always had p=1, gray). Choice is performed after choice- go cue by gazing to either side for at least 200 
ms (choice-hold). Reward size, probability and order of presentation are randomized across trials. Data are anchored to first offer 
on left side, so all data are horizontally mirrored in trials that started with right offer. B. Fraction of choices for right offer (chR), 
higher when right offer had higher EV compared to left offer. Solid line shows logistic fit (logit(chR) = β0 + β1 (EVR - EVL)), shaded areas 
show ±95% Confidence Interval (C.I.).
C. Heatmap of eye position during the task execution. The main gaze pattern follows the sequential presentation of offers. At 
delay times, subjects either looked to most recent presented location (delay1) or at best offer side (delay2).
D. Logistic model of choice (logit(chR)= β0+β1EVL+β2EVR+β3σL

2+β4σR
2+β5sLR+β6fR). The fraction of time spent inspecting right screen 

side fR has impact on choosing right offer in all epochs, even including value related (EVL, EVR, σL
2, σR

2) and presentation order (sLR) 
regressors. E. Same as D, but pooling fR regressors in all offer/delay epochs to assess their weight on the choice. B-E. Trials n=5971 
(Subject 1: n=2463; Subject 2 n=3328). Significance: *p<0.05, **p<0.01,
***p<0.001.



Figure 2. Analyses of neural spike count coding of reward offer EV and the effects of visual inspection on either screen side. A. Fraction 
of cells showing significant encoding of offer expected value (EVL, EVR), independently fit to linear models for the spike count η as 
η=β0+β1 EVL (red), or η=β0+β1 EVR (blue). The regression is applied independently for each cell (n=31±5.85 mean ± s.e.m. cells per 
session, n=248 in total), including all trials (n=746.38±87.29 mean ± s.e.m trials per session, n=5971 in total); Solid lines show the 
empirical results in each time bin; shaded areas (overlaid, in opacity) cover the 5th to 95th percentile of significant fraction of cells 
encoding the respective EV obtained via n=1000 trial order permutations; bottom lines report consecutive runs of time bins 
with significant encoding of EVL or EVR (assessed as fraction of cells above the 95th percentile of trial-order shuffles). B. Time-
averaged fraction of cells showing significant encoding of offer EVs, matching results in B. The significance of empirical values is 
assessed as exceeding of the 95th percentile of the same values run over n=1000 trial-order shuffles of the data (non-significant bars 
are in white). Results for the fraction of cells for EVL and EVR are compared via non-parametric tests (Wilcoxon signed-rank test), 
significance:
- n.s., *p<0.01, **p<0.01, ***p<0.001. C. Top: same as A but focusing on EVL and comparing trial subsets where subjects mostly LookL 
(negative average eye position for current bin, in red) with trials where subjects mostly LookR (positive average eye position, in 
light red). Bottom: same as B but focusing on EVR and comparing LookL trials (blue) with LookR
trials (light blue). D. Top: same as B but focusing on EVL and comparing LookL with LookR trials. Bottom: same as C but focusing on 
EVR and comparing LookL with LookR trials.
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INTRODUCTION

Vertigo is one of the most common causes of consultation in the adult population and particularly in 
the geriatric community 1. Vestibular patients, manifesting vertigo, constitute a rather heterogeneous 
group because of the diversity of symptoms, the intensity of these symptoms and the existence or not 
of comorbidities (psychological, somatic, cognitive, etc.)2–

4. Numerous studies have shown cognitive and postural deficits in vestibular disorders5–7.In
fact, these disorders can be considered as a multisensory syndrome; which has a significant impact on 
psychological, cognitive and social aspects leading to varied and sometimes lasting disabling states. 
However, patients’ management is punctuated by uncertainties and misdiagnosis; moreover, cognitive 
and postural consequences remain unexplored in clinical practice. Other aspects of vestibular 
dysfunction need to be considered. Therefore, a multisensory profile protocol, associated with virtual 
reality (VR), was developed using a new software in order to explore higher cognitive functions. In fact, 
this immersive tool offers user- friendly test programming as well as automated tracking and analysis 
compared to current tools used to investigate human cognition. The feasibility was studied as well to 
investigate patients understanding of the paradigms and their relevance.

METHODS

Based on a literature review, we selected tests and programmed a multisensory computerized 
assessment protocol evaluating different aspects of vestibular dysfunction which are not considered 
in classic clinical evaluation. In this paper, the spatial and cognitive components will be presented. The 
patients were tested using spatial and postural paradigms associated with VR. The spatial cognitive 
component consists of a simple and complex virtual reality maze task. The postural component consists 
of a static and dynamic task associated with virtual reality. The protocol is currently still being 
implemented in persons with chronic vestibular disorders. Following assessment, the patients had to 
respond to a questionnaire in order to measure the study feasibility. The next phase will consist of 
implementing the protocol in healthy individuals. The spatial and postural subsets will be thus validated 
in healthy individuals and vestibular patients.

RESULTS AND DISCUSSION

We recruited 16 patients (12 F, 51 ± 13 years old) suffering from chronic vestibular disorders. Following 
assessment, the patients had to respond to a questionnaire in order to measure the study feasibility. 
There were 12 respondents of which 67 percent said that they would be willing to participate in another 
similar study using VR. These results provide a preliminary overview of a multisensory assessment as 
well as its acceptance by patients and relevance. In fact, user-friendly, automated tests and real-life 
constraining environments are components integrated using the software and thus facilitating human 
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cognition assessment. The spatial and postural subsets are associated with virtual reality paradigms to 
represent ecological situations and reflect difficulties encountered by patients. This protocol will 
continue being tested on vestibular patients and healthy individuals to create a database and guide 
health policymakers by providing information on specific sensory profiles and cognitive impairments 
for optimizing diagnostic and therapeutic purposes.

Keywords: Multisensory profile, Vestibular disorders, Virtual reality, Computer-based Software, Human cognition.

Figure 1. Radial Arm Maze (Complex Spatial task) configured in supermarket environment. The subject was placed at the 
centre of the six armed maze and had to learn to find two rewards located in different arms. The distance travelled and 
latency were recorded. This task allowed the evaluation of reference memory and working memory.

REFERENCES

1. Bisdorff A, Bosser G, Gueguen R, Perrin P. The epidemiology of vertigo, dizziness, and 
unsteadiness and its links to co-morbidities. Front Neurol. 2013;4 MAR(March):1-7. 
doi:10.3389/fneur.2013.00029

2. Lahmann C, Henningsen P, Brandt T, et al. Psychiatric comorbidity and psychosocial 
impairment among patients with vertigo and dizziness. J Neurol Neurosurg Psychiatry. 
2014;86(3):302-308. doi:10.1136/jnnp-2014-307601

3. Jacob RG, Furman JM. Psychiatric consequences of vestibular dysfunction. Curr Opin Neurol. 
2001;14(1):41-46. doi:10.1097/00019052-200102000-00007

4. Limburg K, Sattel H, Radziej K, Lahmann C. DSM-5 somatic symptom disorder in patients with vertigo 
and dizziness symptoms. J Psychosom Res. 2016;91:26-32. doi:10.1016/j.jpsychores.2016.10.005

5. Popp P, Wulff M, Finke K, Rühl M, Brandt T, Dieterich M. Cognitive deficits in patients with a chronic 
vestibular failure. J Neurol. 2017;264(3). doi:10.1007/s00415-016-8386-7

6. Whitney SL, Marchetti GF, Schade AI. The relationship between falls history and computerized dynamic 
posturography in persons with balance and vestibular disorders. Arch Phys Med Rehabil. 
2006;87(3):402-407. doi:10.1016/j.apmr.2005.11.002

7. Bisdorff A, von Brevern M, Lempert T, Newman-Toker DE. Classification of vestibular 
symptoms: Towards an international classification of vestibular disorders. J Vestib Res. 
2009;19(1-2):1-13. doi:10.3233/VES-2009-0343



166. Role of the Motor Cortex and Social 
Environment in Cue-Triggered Decision-Making: 
Insights from Single-Pulse TMS and Action 
Observation

Junjie Wei1, Cas Teurlings1, Sara Garofalo2, Francesca Starita2, Lara Bardi3, Yulong Huang3, Angela Sirigu3, 
Giuseppe Di Pellegrino2 and Valeria Gazzola1

1 Netherlands Institute for Neuroscience, Amsterdam, Netherlands
2 Department of Psychology, University of Bologna, Bologna, Italy
3 Institut des Sciences Cognitives Marc Jeannerod, Neuropsychology of Action Lab, Paris, France

Introduction

Environmental cues play an important role in our daily life by influencing decision-making and 
guiding behaviors (Bray et al., 2008). The most common paradigm to investigate the influence of 
environmental cues on decision-making is the Pavlovian Instrumental Transfer (PIT) task, which 
could test the transfer effects between Pavlovian cues (e.g., colors) and instrumental actions (e.g., 
pressing left or right buttons) via the same reward (specific transfer) or similar rewards associated with 
the Pavlovian cue (general transfer). In this process, Lepora et al (2015) stressed the motor system is not 
just responsible for physically executing actions, but is also involved in making decisions. It plays a 
causal role in decision-making based on cues. While there is a close relationship between decision-
making, behavior and motor system, the current research on this topic is still sparse, and to what 
extent a conclusion could be generalized to the role of the premotor cortex is unclear in this process. 
Therefore, we set two Pavlovian phases before (Pav1) and after (Pav2) instrumental learning in the 
current experiment, aiming to investigate whether the premotor cortex is deeply involved in 
building associations between behavioral and environmental cues. By measuring the motor evoked 
potentials (MEP) induced by single-pulse transcranial magnetic stimulation (TMS) during the PIT task, 
we aim to explore the role of the premotor cortex in the decision-making of the PIT task. We 
hypothesize that there will be an increase in cortical excitability, measured from the premotor cortex, 
in the second Pavlovian phase (Pav2) compared to the first (Pav1). Because we expect that the 
instrumental phase affects the motor representation of the cue related to that specific action 
(specific PIT).

Methods
40 healthy adults (M = 24.63, SD = 4.60) were recruited. 38 of these completed the whole task and 
MEP data collection. Each participant was asked to fill out an online questionnaire first to assess 
their liking of the food stimuli from a preselected list of 40 snack foods. The resting motor threshold 
(RMT) and the intensity of single-pulse TMS were estimated for each subject to set the individualized 
stimulation strength before the experiment. Then they were asked to play a tailored PIT paradigm 
based on their three favorite snacks to ensure that the food reward in the paradigm was highly 
attractive to the participant. Individual MEP data was recorded in two Pavlovian phases before and 



after the instrumental phase, including behavioral data from the transfer PIT phase.

Results
Behavioral results revealed, tested with a paired samples t-test, a specific transfer effect (t (75)
=8.61, p<0.0001), both in CS1 (t (37) =4.95, p<0.0001) and CS2 conditions (t (37) =7.51, p<0.0001). 
There was a marginally significant difference between the number of responses in the CS3 condition 
(M±SD=151.7±65.82) and in the CS- condition (M±SD=135.4±70.94) in the general PIT effect (t (37) 
=2.019, p=0.0507). For the MEP data, a repeated ANOVA analysis was conducted, but no significant 
differences were found between conditions (conditioned stimulus, left and right hemisphere for 
the first Pavlovian phase and the second Pavlovian phase).

Discussion
The behavioral results of our PIT task provide evidence to illustrate that environmental cues could 
influence our decision-making (PIT effect). However, the investigated role of the motor cortex before 
and after building the association between action and food rewards (difference in MEP amplitudes) 
did not lead to any significant results. In the current experiment, we did not use neural navigation, 
and participants' inattentive head movement during the experiment may have affected the MEP 
results. In the future, different observational techniques that could compare between brain 
regions or size of activity within the motor cortex (e.g., BOLD fMRI) could help us better understand 
the changes during the PIT task.
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INTRODUCTION/MOTIVATION

We rely on pre-existing models of the world accumulated through past experiences to form internal 

representations of our present environment. In addition to facilitating perception in the present, these models 

enable us to engage in prospective thoughts and mental simulations unrelated to the immediate 

environment. Traces of both streams of thought have been found to coexist and share some neuronal 

mechanisms at the earliest level of cortical processing [1][2]. It is still a challenge to understand the 

mechanisms that allow the parallel existence of these two streams of thought while at the same time keeping 

the perception of reality and imagination segregated. We used 7T fMRI and a navigation task to investigate on a 

laminar level the two codes of information – related to the present and to the anticipated future.

METHODS

We used a VR headset to familiarise participants with a virtual environment prior to scanning. The 

environment consisted of four contextually different rooms (a kitchen, an office, a bedroom, and a game 

room) arranged in a plus shape configuration (Fig .1A). We recorded BOLD responses in a series of experiments 

using 3T and 7T fMRI while participants were presented with videos simulating navigation through the 

environment. Directional cues elicited expectations for an upcoming room that the participant was not 

presently viewing but could generate prospective thoughts about (Fig. 1B). The lower right quadrant of the 

video was hidden behind an occluder, blocking feedforward input to the corresponding patch of the visual 

cortex. We applied MVPA analysis to probe the contents of the activation in the non-stimulated areas of the 

visual cortex. We were interested whether the classifier could successfully decode the anticipated future room 

even before it was presented. In a subsequent control study, we removed the direction cue to prevent the 

anticipation of the upcoming room.
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Figure 1. (A) An aerial perspective of the virtual environment. The yellow arrows denote the trajectories of 

navigation videos. (B) Experimental design. A direction cue is shown to the subject for 2s followed by a 10s inter-

stimulus interval. The start room video is then shown for 6s, depicting a first- person perspective moving out of 

the start room (Game room/Bedroom) into the centre room. A 12s inter-stimulus interval precedes the end 

room video moving into the end room (Kitchen/Office). The bottom right quadrant of the video stimuli is 

occluded.

RESULTS AND DISCUSSION

The classifier could successfully decode the anticipated future room based on activity from non- 

stimulated patches of area V2 and V3 (Fig.2 A). Upon removing the direction cue at the start of navigation, 

the classifier performance dropped to chance level. This suggests that information about the future is driven by 

predictions formed in higher order areas and is conveyed to the visual cortex via feedback cortical pathways. 

Our 7T study reviled traces of information about the future room specifically in the deep and superficial 

cortical layers of V2 and deep layers of V3 (Fig. 2 B, C). This finding is in line with previous studies identifying 

deep and superficial layers to be the main target of feedback connections [3]. Our results further add to 

findings from animal model studies which point to the importance of layer-spanning pyramidal neurons 

for the integration of feedforward and feedback processing [4]. Information about the present room in non-

stimulated patches of the visual cortex was decodable only at the end of the navigation path but not at the 

start. This finding raises the question of potential competition between the two codes of information 

which is yet to be answered in future studies.



Figure 2. Classification results for decoding the identity of the future room from occluded voxels.

(A) Results from the 3T (N=20) and the 7T (N=15) study for all ROIs. (B) Decoding accuracy of the future room across 

cortical depths of area V2. (C) Decoding accuracy of the future room across cortical depths of area V3.

Keywords: fMRI, cortical layers, cortical feedback processing, navigation, visual cortex, VR
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INTRODUCTION

Neuronal activity in brain networks unfolds across a multitude of spatiotemporal scales, due to the brain’s 

hierarchical organization and to the constraints given by the need to bidirectionally interact with the environment. The 

bottom-up flow of information from sensory to associative areas and the top-down feedback in the opposite direction follow 

specific and almost complementary laminar and inter-areal trajectories [1]. The effectiveness in the percolation and 

transformation of information across these pathways is known to underlay our capability of conscious processing [2].

However, the mechanistic underpinnings of the sleep/wake cycle, in which consciousness is lost and recovered and the 

working regime of our brain changes dramatically, are still widely unknown. Long-range functional connectivity, for 

instance, is widely modulated across these global transitions in brain state [3,4], while local connectivity appears to be 

preserved [5]. Yet, spiking activity in the thalamus and deep cortical layers correlates with consciousness level [6]. A state-

dependent modulation of cross-laminar temporal dynamics has been also found at the macroscale, on top of infra-slow 

rhythms [7]. Thus, changes in the activity occur both at the macro- and microscopic level as a function of the brain state, yet 

it remains poorly understood how global state transitions such as between wakefulness and anaesthesia unfold.

Here, we focused on the laminar spatiotemporal unfolding of isoflurane-induced slow-wave activity (SWA) and on its 

modifications during the awakening process. To this purpose, we simultaneously recorded the activity of several neuronal 

assemblies probed across all cortical layers, and in both a primary and a higher sensory area during the transitions from 

awake to isoflurane-induced SWA and vice versa.

METHODS

Experiments were performed in head-fixed mice (N=12). Following habituation to head-fixation, two dual-shank laminar 

probe recordings (Neuronexus A2x16-10mm-100-500-177CM32) were performed in primary visual cortex V1 and posterior 

parietal cortex PPC, identified via intrinsic signal imaging. Probe location was verified post- mortem via histological 

reconstruction. Recordings were done across behavioural states, using the following sequence: wakefulness (30 min), 

anaesthesia induction, progressive decrease of isoflurane concentration: 0.5%, 0.3% and 0% (awakening); for each level there 

was 15 min of induction and 30 min of stable recording. From the
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raw recordings, LFP and MUA signals were extracted. Ad-hoc Matlab (The Mathworks) scripts were used for further 

analyses.

RESULTS AND DISCUSSION

We characterized the activity propagation both across cortical layers and between the two cortical areas we recorded. 

Fading of anaesthesia wass accompanied by increasingly complex and rapid patterns, whose main modes of propagation 

travelled from posterior to medial-lateral areas and vice versa. At the same time, the wakening process showed 

emerging instances of asynchronous, generalized spiking activity. Spectral analysis showed that the neuronal activity shifted 

from infra-slow (around 0.1 Hz) to slow (1 Hz), to the theta range (6-8 Hz) while going from high isoflurane levels to 

wakefulness.

Importantly, when characterizing the simultaneous propagation of the activity across the layers and across the cortical 

surface, we found that the timing with which layer 5, 6 and 2/3 are entrained changes depending on the global state, with 

the involvement of layer 2/3 (L2/3) showing the biggest changes when recovering from anaesthesia. Critically, this 

occursed specifically for feedback propagation (PPC to V1). Specifically, the delay with which the spiking activity coming from 

layer 5 propagated to L2/3 got smaller when the global state approached awakening.

Our results shed new light on the interplay between local (at the level of single neurons) and global dynamics involved in 

the feedforward and feedback signalling in the transition to and from consciousness.

Keywords: Sensory processing, laminar computation, isoflurane, sleep, slow-wave activity, consciousness, 

anaesthesia.
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INTRODUCTION

Conscious and unconscious states are characterized by differences in whole brain dynamics as well as differences 
in the microscale of single neurons. The awake brain generates high frequency, asynchronous neuronal 
activity, corresponding to sustained but irregular firing patterns of single neurons, defined as Asynchronous 
Irregular (AI). On the contrary, during unconscious states like non- rapid eye movement (NREM) sleep or 
anesthesia, the dynamics switch to synchronous slow-wave activity, as a result of neurons oscillating between 
hyperpolarized (Down) and depolarized (Up) states 1,2. In addition to these discernable spontaneous dynamics, a 
state-dependent response of the brain to external stimuli is observed, with complex patterns of stimulus 
propagation evoked during wakefulness as opposed to diminished responsiveness during slow-wave activity 3–5. 
In Showcase 3 of the Human Brain Project, whole-brain models of this paradigm were implemented in three 
different species, the human, mouse and macaque.

METHODS

The paradigms are demonstrated by simulations constructed in EBRAINS, consisting of the 
implementation of AdEx mean-field models into The Virtual Brain (TVB) 6,7. This model could reproduce two activity 
states, asynchronous and synchronized slow-waves, as well as their responsiveness.

In the case of human, experiments using transcranial magnetic stimulation (TMS) were replicated, in order to 
show this differential brain responsiveness between wakefulness and slow-wave sleep or anesthesia, 
quantified by the Perturbational Complexity Index (PCI) 4. This paradigm could be equally simulated in the cases 
of monkey and mouse brain. In the latter case, the mice model could be further compared to calcium imaging 
experiments, displaying a decrease of PCI with the depth of the anesthesia and the emergence of slow waves8.

RESULTS AND DISCUSSION

The TVB - AdEx mean-field model was able to reproduce the occurrence of empirically observed patterns of 
spontaneous and evoked macroscopic brain dynamics between conscious and unconscious states,
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across three different species. The advantage of the AdEx mean-field model is two-fold. Firstly, this model has 
been conceived to capture the asynchronous and slow-wave states, which are central in the studying of different 
level of consciousness. Secondly, a great feature of the mean-field model is that it enables the assessment of the 
impact of altering microscopic parameters on a whole-brain level. We show here the example of simulating 
whole brain slow-wave activity, following changes in synaptic receptor parameters, either by enhancing GABA-A 
receptors (propofol, barbiturates, isoflurane), or by reducing glutamate (NMDA) receptors (ketamine, xenon)9. In 
both cases, these actions can lead to the emergence of slow-wave dynamics, mimicking the action of these 
anesthetics.

In conclusion, we demonstrate that the EBRAINS-based TVB-Adex model is a powerful tool to investigate the effect 
of drugs (anesthetics) on the emergence of activity at the whole brain level, as well as capturing its responsiveness 
to external inputs and the way information about these inputs is propagated across the brain, which appears to 
be an important correlate of the level of consciousness. Future work will address the signs of consciousness 
based on monkey fMRI experiments, as well as in human patients in coma or minimal states of consciousness.

Keywords: whole-brain simulation, mean-field model, spontaneous activity, evoked responses, wakefulness, slow-
wave sleep, anaesthesia, unconscious states
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Figure 1: Simulations of spontaneous whole-brain dynamics using of the TVB-AdEx mean-field model reproducing 
awake (left column) and deep sleep (right column) states in the mouse, macaque and human. The time traces 
of the firing rates of inhibitory and excitatory populations (red and blue) and adaptation current (gold) of each 
of the nodes are plotted, representing 98 brain regions for the mouse, 84 for the macaque and 76 for the human. 
For low spike frequency adaptation (be = 5 pA) asynchronous brain activity emerges, while by increasing the 
adaptation (be = 60pA) the dynamics switch to synchronous, slow-wave activity.



REFERENCES

1. Niedermeyer E, da Silva FHL. Electroencephalography: Basic Principles, Clinical Applications, and 
Related Fields. Lippincott Williams & Wilkins; 2005.

2. Goldman JS, Tort-Colet N, di Volo M, et al. Bridging Single Neuron Dynamics to Global Brain States. 
Front Syst Neurosci. 2019;13:75. doi:10.3389/FNSYS.2019.00075/BIBTEX

3. Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness 
independent of sensory processing and behavior. Sci Transl Med. 2013;5(198). 
doi:10.1126/SCITRANSLMED.3006294

4. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective 
connectivity during sleep. Science. 2005;309(5744):2228-2232. 
doi:10.1126/SCIENCE.1117256

5. Dasilva M, Camassa A, Navarro-Guzman A, et al. Modulation of cortical slow oscillations and 
complexity across anesthesia levels. Neuroimage. 2021;224. 
doi:10.1016/J.NEUROIMAGE.2020.117415

6. Volo M di, Romagnoni A, Capone C, Destexhe A. Biologically Realistic Mean-Field Models of 
Conductance-Based Networks of Spiking Neurons with Adaptation. Neural Comput. 
2019;31(4):653-680. doi:10.1162/neco_a_01173

7. Goldman JS, Kusch L, Aquilue D, et al. A comprehensive neural simulation of slow-wave sleep and highly 
responsive wakefulness dynamics. Front Comput Neurosci. 2023;16:190. 
doi:10.3389/FNCOM.2022.1058957/BIBTEX

8. Brockmeyer T, Friederich HC, Schmidt U. Advances in the treatment of anorexia nervosa: a review 
of established and emerging interventions. Psychol Med. 2018;48(8):1228-1256. 
doi:10.1017/S0033291717002604

9. Hemmings HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular 
mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26(10):503-
510. doi:10.1016/j.tips.2005.08.006



170. Apparent divergence of EEG signal diversity and 
information integration in rats during anaesthesia

A.S. Nilsen*1, A. Arena1, J.F. Storm1

Affiliations: 1 Physiology section, Department of Molecular Medicine, Institute of Basic Medical Sciences,

University of Oslo.

*andresni@medisin.uio.no

INTRODUCTION

To investigate proposed mechanisms underlying loss of consciousness, it is important to 

extend approaches used in humans to rodents. Perturbational complexity index (PCI) has 

been promoted as a metric of “capacity for consciousness” in humans1, but PCI is technically 

demanding and impractical for some clinical purposes. Therefore, a measure based on 

spontaneous EEG recordings is desired. We aimed to compare PCI directly with spontaneous 

EEG-based measures of signal diversity and integrated information in rats during 

wakefulness and while undergoing different forms of general anesthesia. Such a direct 

comparison seems to be lacking so far.

METHODS

Adult male Sprague-Dawley rats (n = 12) were chronically implanted with 16 epidural 

electrodes placed in a symmetric grid covering most of the dorsal neocortical surface (Figure 

1A), for EEG recording during normal rest and general anaesthesia with either (1) ketamine,

(2) propofol, or, (3) sevoflurane. See 2 for more details. Spontaneous EEG data was analysed 

in terms of signal diversity (Lempel-Ziv complexity; LZc, Amplitude Coalition Entropy; ACE, 

Synchrony Coalition Entropy: SCE - see e.g. 3), power spectrum slope in the 20-40 Hz

range (SE20-40 - see e.g. 4), and measures of information integration (decoder based 

integrated information; 𝚽*, geometric integrated information; 𝚽G, stochastic interaction; 

SI, multi mutual information given covariance; MI, mutual integrated information; MII - see 

e.g. 5).

The measures were compared to each other and to the state transition-based perturbational 

complexity index (PCIST - see 6).
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RESULTS
All measure of signal diversity (except SCE), SE20-40, and measures of information integration 

were significantly rank-order correlated with PCIST (|𝜌| > .318, p < .05) across rats and

conditions (Figure 1E). The measures LZc, ACE, SE20-40, and 𝚽G, were all able to differentiate
wakefulness from propofol and sevoflurane anaesthesia (Wilcoxon S-R. test; Z = 0, p < 0.005),

but only PCIST, SCE, and 𝚽G were able to differentiate wakefulness from ketamine anaesthesia 

(Z < 2, p < 0.05). All measures besides SCE showed the same relative absolute difference 

between wakefulness and anaesthesia (% diff. wake vs. propofol > sevoflurane > ketamine -

see Figure 1D). However, while measures of signal diversity and PCIST decreased in anaesthesia 

as expected, measures of information integration increased, contrary to expectations. Post-

hoc analysis showed that an increase in network integration during anaesthesia, and a 

decrease in segregation (Figure 1F) predicted the level of change in the measures used. 

Applying the same analysis on a range of auto-regressive models (Figure 2A) made to 

investigate the relationship between structural properties of a network and measures of 

information integration 7 further supported these results (Figure 2B).

DISCUSSION

We observed that signal diversity measures based on spontaneous EEG can accurately 

distinguish between wakefulness and different anesthetics in a similar way as

the perturbational index, PCIST. However, contrary to expectations, we found that measures 

of information integration increased during anesthesia. While estimates of structural 

integration (increase in anesthesia) and segregation (decrease in anesthesia) predicted the 

observed changes in measures based on spontaneous EEG, the connectivity changed in the 

opposite direction compared to connectivity measures based on evoked responses2. This is 

surprising given the contemporary understanding of the effect of anesthesia on 

corticocortical connectivity (e.g. 8). We speculate that our results may be explained by either 

a decrease in specificity in information processing (i.e. reduced differentiation) during 

propofol and sevoflurane anesthesia, but not in ketamine anesthesia, or that thalamocortical 

projections are preserved during propofol and sevoflurane anesthesia while long-range 

corticocortical connectivity is disrupted as is argued in previous studies.

Keywords: EEG, consciousness, anaesthesia, rat, PCI, integrated information, signal diversity, connectivity, 

neuroscience
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FIGURES

Figure 1. A) Overview of electrode placement. B) Example of raw traces from a single rat and single channel (M2R). C) Power spectral density 

over channels for a single rat. D) Percentwise change from wakefulness for measures of signal diversity, PCI, and integrated information. E) 

Spearman’s rank-order correlation matrix between measures, across all rats and conditions. F) Estimate of structural integration (global 

efficiency) and structural segregation (modularity) of the directed connectivity ( as

estimated by the directed transfer function) during wakefulness and anesthesia. Abbreviations: 𝜌; Spearman's correlation, LZs;
Lempel-Ziv single channel complexity, PCIST; perturbational complexity index on state transitions, 𝚽G; geometric integrated information, SE20-

40; spectral exponent (calculated in the 20-40 Hz range), ACE; amplitude coalition entropy, SCE; synchrony coalition entropy, 𝚽*; mismatched 

decoding based integrated information, SI; stochastic interaction, MI; multi mutual information given  covariance,  MII;  mutual  integrated  

information,  Mean  Coh;  mean  absolute  coherence  across  channels.

Figure 2. A) Overview of the auto-regressive model inspired by 7, B) Spearman's rank-order correlation matrix between measures and 

estimated network properties based on the directed transfer function (DTF), across all generated models, C) and over

estimated (est.) network properties based on DTF and on the networks’ underlying (model) connectivity (matrix A in panel A). 

Abbreviations: 𝜌; Spearman's correlation, LZs; Lempel-Ziv single channel complexity, 𝚽G; geometric integrated information, SE20-

40; spectral exponent (calculated in the 20-40 Hz range), ACE; amplitude coalition entropy, SCE; synchrony coalition entropy, 𝚽*;

https://paperpile.com/c/XS2c2j/oxSFt


mismatched decoding based integrated information, SI; stochastic interaction, MI; multi mutual information given covariance, MII; mutual 

integrated information, Mean Coh; mean absolute coherence across channels, C; correlated noise factor, Wij; connection weight, Q; 

modularity estimated with the Louvain method, GE; global efficiency (i.e. mean inverse shortest path length).
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INTRODUCTION/MOTIVATION

New technologies usually are developed with the best intentions in mind. However, history of technology shows that 

afterwards they occasionally are put to harmful or malicious uses. This is typically known as a dual use problem, 

namely, that all technologies – including brain research – can be put to socially beneficial as well as harmful uses 

(Ulnicane 2020). More narrowly, dual use is understood as civil-military dichotomy, where technologies can have 

applications both in civil and military domains. The EU Framework Programme for research and innovation, which also funds 

the Human Brain Project (HBP), stipulates that all research it funds should have an exclusive focus on civil applications. In 

addition to complying with the contractual obligations about exclusive focus on civil applications, the HBP Ethics and Society 

team in collaboration with scientists and stakeholders within and beyond the project has developed a novel approach to dual 

use of concern issues (Ulnicane et al 2022). This approach considers a broader range of potential concerns that brain 

research might raise in political, security, intelligence and military domains (Aicardi et al 2018).

METHODS

To identify and address dual use of concern in brain research, the HBP Ethics and Society team uses Responsible Research and 

Innovation (RRI) approach, which aims to align research and innovation with societal needs (Stahl et al 2021). To identify and 

address potential concerns, RRI approach focuses on anticipation, reflection, engagement and action. These activities 

require interdisciplinary collaborations bringing together expertise, insights and perspectives from various disciplines 

including neuroscience, computing, social sciences and humanities (Aicardi et al 2020). The HBP has established a number 

of forums for such interdisciplinary collaborations including a project-wide Dual Use Working Group that collaborates 

closely with the Ethics Rapporteur Programme, HBP Education programme and the Ethics and Society team (Ulnicane et al 

2022). These forums provide safe spaces and networks of support that allow to raise and discuss any potential 

concerns in a safe and supportive environment that encourages mutual learning and experimentation. Identifying any 

potential concerns is a part of an ongoing and open-ended dialogue rather than a checklist or a box-ticking exercise (Stahl 

2019).

RESULTS AND DISCUSSION

Our experience from these interdisciplinary collaborations suggests that in order to identify and address a broader range of 

potential concerns, it is important 1) to productively combine research and practice, where research on
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governance of emerging technologies provides background and ideas for novel methods, while practice raises questions 

for future research; 2) to closely integrate activities of anticipation, reflection, engagement and action; and 3) to undertake 

an experimental approach which allows to flexibly engage with emerging and uncertain issues (Ulnicane et al 2022). This 

approach to dual use of concern developed by the HBP Ethics and Society team has been well received (Ienca et al 2018), 

including invitations to present it at the Horizon Europe Foresight Network of the European Commission and to provide 

training on dual use issues for another FET project.

Keywords: dual use of concern, misuse, brain research, Responsible Research and Innovation, ethics, governance, emerging 

technology, interdisciplinary collaboration
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INTRODUCTION/MOTIVATION

The analysis of the relationship between neural anatomical structures and the emerging functional properties is a crucial step 

for the advancement of modern Neuroscience. The integration through multimodal approaches of advanced 

electrophysiological recordings, imaging and modelling techniques to address the structure -function conundrum is now 

opening promising perspectives in health and neurotechnology. This long-term vision is the backbone of the EBRAINS 

Italian national node, which offers an integrated approach encompassing Multiscale, Multimodal and Multimodel analyses 

(3M) to provide Health, Neuroscientific and Industrial communities access to services in the EBRAINS framework.

The understanding of brain structures and functions has been significantly improved owing to modern imaging techniques 

such as magnetic resonance imaging (MRI) at the macroscale and optical imaging at the micro and mesoscale. At the same 

level, novel signal recordings methods such as high-density integrated silicon-technologies and genetically encoded activity 

probes have shed light on molecular, cellular and biophysical building blocks at multiple temporal resolution. The data 

generated with these techniques can be integrated with multiscale modelling workflows that can go either from micro 

to macro and vice-versa to simulate brain functions with an unprecedented range of spatio-temporal scales. Data-driven 

models of brain activity allow conceptual integration, provide the basis for prediction and validation and can be potentially 

brought up to the generation of effective
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brain digital twins. The integration of data and models is the basis for the Italian node toward the effective 

implementation of the EBRAINS targets.

METHODS

The EBRAINS Italian National Node (EINN) will move along a multiscale spatiotemporal concept offering a 3M approach in 

which the structure-function dichotomy can be explored using advanced methods implemented and accessed through 

various facilities distributed within the national EBRAINS ecosystem. The EINN is led by the Consiglio Nazionale delle 

Ricerche (CNR) and interacts with many national bodies. The “EBRAINS Italian Community (EIC)” consortium is one of 

them. It embraces 15 research institutions, working on the involvement of stakeholders and communities in order to support 

the national node. Together with that, EINN interacts with the consortium of institutes, most of them also included in EIC, 

involved in the EBRAINS-Italy Infrastructure (a National Project connected to the “European Recovery Funds Action”), in 

which 23 operative units are creating services for data production, storage and curation, analysis and modelling tools 

including neuromorphic and neurorobotics, and innovative genetically-encoded molecular tools for translational 

applications, as well as a training and innovation facility, all of which propaedeutic to the creation of the Italian National 

Node services.

On top of that, EINN also interacts with the neuroscience National Communities, Hospital Networks, industries and 

governmental bodies.

The Italian National Node will be keen in securing adequate and sustainable funding to provide tools and services to the 

EBRAINS RI by continuous interaction with national and regional governing bodies as well as biotech and pharma companies 

to set up tailored services.

Fig.1



RESULTS AND DISCUSSION

The EBRAINS Italian National Node has moved along this 3M vision and the partners are implementing service pipelines 

integrating customized 3M data production, data analysis, data curation and data management, together with modelling, 

simulation and neurorobotic platforms. Furthermore, a service for training and innovation center will be made available for 

the development and use of ad hoc training instruments, both on-site and in remote (e.g., e-learning) and to promote 

dissemination and interactions with academic, institutional and industrial partners. The EINN proposes integrated data 

services that feed modelling and simulation in line with the original EBRAINS proposition of connecting distributed research 

infrastructures for neuroscience toward a new era of neuroscience research.
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One major objective of the EBRAINS SPAIN is to increase the interaction and links between its members and other 

neuroscientific actors worldwide to generate opportunities for joint research and optimize the agenda of services to be 

integrated and offered through EBRAINS.

The activities of the EBRAINS Spanish Node are designed to generate a much more profound understanding of the EBRAINS´ 

mission by other national players, including patients and the public, thus contributing to a broader perception of the 

social, economic, and medical benefits of human brain research.

The EBRAINS Spanish Node is presently formed by different universities, research centers, hospitals, and industrial companies 

operating in neuroscience and neuro-technology. The members are immersed in diverse research initiatives, including, 

among many others, the combination of functional brain imaging techniques with patient injury data, pharmacology, 

genetics and intracranial registries to analyse human brain functions; the study of new non-pharmacological treatments for 

movement disorders, in particular for Parkinson's disease; the development of diagnostic tools to evaluate non-invasive 

and translational image-based biomarkers in neurodegenerative diseases; the elaboration of prognostic tools based on 

artificial intelligence; the three-dimensional reconstruction of the structure of brain tissue to provide data on brain 3D 

synaptic organization; or the use of multiphotonic stimulation, with non-invasive infrared light, to target pharmacological 

actions. The Node may also provide access to various and comprehensive computational imaging biobanks for brain 

research.

The synergies associated to these research initiatives will contribute to position the Node as a strategic pillar of the Spanish 

Neuroscience system and facilitate a progressive alignment of its work to the European Commission policies and programs in 

Neuroscience, particularly in relation to the fight against brain diseases.
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